論文の概要: An experiment on an automated literature survey of data-driven speech
enhancement methods
- arxiv url: http://arxiv.org/abs/2310.06260v1
- Date: Tue, 10 Oct 2023 02:07:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-11 20:54:57.528841
- Title: An experiment on an automated literature survey of data-driven speech
enhancement methods
- Title(参考訳): データ駆動型音声強調手法に関する自動文献調査の試み
- Authors: Arthur dos Santos, Jayr Pereira, Rodrigo Nogueira, Bruno Masiero,
Shiva Sander-Tavallaey, Elias Zea
- Abstract要約: 本研究は,データ駆動型音声強調法に関する116項目の文献調査を自動化するために,生成事前学習型トランスフォーマ(GPT)モデルの利用について検討する。
- 参考スコア(独自算出の注目度): 5.931978628000179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing number of scientific publications in acoustics, in general,
presents difficulties in conducting traditional literature surveys. This work
explores the use of a generative pre-trained transformer (GPT) model to
automate a literature survey of 116 articles on data-driven speech enhancement
methods. The main objective is to evaluate the capabilities and limitations of
the model in providing accurate responses to specific queries about the papers
selected from a reference human-based survey. While we see great potential to
automate literature surveys in acoustics, improvements are needed to address
technical questions more clearly and accurately.
- Abstract(参考訳): 音響学における科学出版物の増加は、一般的に伝統的な文献調査を行うのが困難である。
本研究では,データ駆動型音声強調法に関する116項目の文献調査を自動化するために,生成事前学習型トランスフォーマ(GPT)モデルを用いた。
主な目的は、参照人間による調査から選択した論文に関する特定の質問に対する正確な応答を提供する際のモデルの能力と限界を評価することである。
音響学における文献調査の自動化には大きな可能性を秘めているものの、技術的問題により明確かつ正確に対処するためには改善が必要である。
関連論文リスト
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
言語モデルの性能の効果的な指標としての可能性を示す。
提案手法は,より優れた性能をもたらすプロンプトの選択と構築のための尺度として,疑似可能性を利用する2つの手法を提案する。
論文 参考訳(メタデータ) (2024-11-12T13:14:09Z) - Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
文献分析は、都市科学における研究動向、スコープ、影響を理解するために不可欠である。
キーワード検索に依存する伝統的な手法は、記事のタイトルやキーワードに明記されていない価値ある洞察を明らかにするのに失敗することが多い。
我々は、生成AIモデル、特にトランスフォーマーとレトリーバル拡張生成(RAG)を活用して、バイオロメトリ分析の自動化と強化を行う。
論文 参考訳(メタデータ) (2024-10-08T05:13:27Z) - LLAssist: Simple Tools for Automating Literature Review Using Large Language Models [0.0]
LLAssistは学術研究における文献レビューの合理化を目的としたオープンソースツールである。
レビュープロセスの重要な側面を自動化するために、Large Language Models(LLM)とNatural Language Processing(NLP)技術を使用する。
論文 参考訳(メタデータ) (2024-07-19T02:48:54Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - AutoSurvey: Large Language Models Can Automatically Write Surveys [77.0458309675818]
本稿では,総合的な文献調査を自動作成する手法であるAutoSurveyを紹介する。
従来の調査論文は、膨大な量の情報と複雑さのために、課題に直面している。
我々の貢献には、調査問題に対する総合的な解決策、信頼性評価方法、AutoSurveyの有効性を実証する実験的な検証が含まれる。
論文 参考訳(メタデータ) (2024-06-10T12:56:06Z) - Efficient Systematic Reviews: Literature Filtering with Transformers & Transfer Learning [0.0]
特定のトピックに関する重要な研究項目を特定するのに必要な時間に関して、負担が増大する。
本研究では,必要な内容の自然言語記述として提案される研究課題に適合する汎用フィルタリングシステムを構築する方法を提案する。
以上の結果から, バイオメディカル文献に基づいて事前学習したトランスフォーマーモデルを用いて, 特定のタスクを微調整したトランスフォーマーモデルにより, この問題に対する有望な解決策が得られた。
論文 参考訳(メタデータ) (2024-05-30T02:55:49Z) - A Comparative Study of Perceptual Quality Metrics for Audio-driven
Talking Head Videos [81.54357891748087]
4つの生成手法から生成した音声ヘッドビデオを収集する。
視覚的品質、口唇音の同期、頭部運動の自然性に関する制御された心理物理実験を行った。
実験では,モデル予測と人間のアノテーションの整合性を検証し,広く使用されている指標よりも人的意見に整合した指標を同定した。
論文 参考訳(メタデータ) (2024-03-11T04:13:38Z) - Analysing the Impact of Audio Quality on the Use of Naturalistic
Long-Form Recordings for Infant-Directed Speech Research [62.997667081978825]
早期言語習得のモデリングは、幼児が言語スキルをブートストラップする方法を理解することを目的としている。
近年の進歩により、より自然主義的なトレーニングデータを計算モデルに利用できるようになった。
音質がこれらのデータに対する分析やモデリング実験にどう影響するかは、現時点では不明である。
論文 参考訳(メタデータ) (2023-05-03T08:25:37Z) - Application of Transformers based methods in Electronic Medical Records:
A Systematic Literature Review [77.34726150561087]
本研究は,異なるNLPタスクにおける電子カルテ(EMR)のトランスフォーマーに基づく手法を用いて,最先端技術に関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-04-05T22:19:42Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。