Learning Stackable and Skippable LEGO Bricks for Efficient, Reconfigurable, and Variable-Resolution Diffusion Modeling
- URL: http://arxiv.org/abs/2310.06389v3
- Date: Thu, 27 Jun 2024 18:02:06 GMT
- Title: Learning Stackable and Skippable LEGO Bricks for Efficient, Reconfigurable, and Variable-Resolution Diffusion Modeling
- Authors: Huangjie Zheng, Zhendong Wang, Jianbo Yuan, Guanghan Ning, Pengcheng He, Quanzeng You, Hongxia Yang, Mingyuan Zhou,
- Abstract summary: Diffusion models excel at generating photo-realistic images but come with significant computational costs.
Current options like U-Net and Vision Transformer often rely on resource-intensive deep networks.
This study introduces LEGO bricks, which seamlessly integrate Local-feature Enrichment and Global-content Orchestration.
- Score: 98.65190562585461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models excel at generating photo-realistic images but come with significant computational costs in both training and sampling. While various techniques address these computational challenges, a less-explored issue is designing an efficient and adaptable network backbone for iterative refinement. Current options like U-Net and Vision Transformer often rely on resource-intensive deep networks and lack the flexibility needed for generating images at variable resolutions or with a smaller network than used in training. This study introduces LEGO bricks, which seamlessly integrate Local-feature Enrichment and Global-content Orchestration. These bricks can be stacked to create a test-time reconfigurable diffusion backbone, allowing selective skipping of bricks to reduce sampling costs and generate higher-resolution images than the training data. LEGO bricks enrich local regions with an MLP and transform them using a Transformer block while maintaining a consistent full-resolution image across all bricks. Experimental results demonstrate that LEGO bricks enhance training efficiency, expedite convergence, and facilitate variable-resolution image generation while maintaining strong generative performance. Moreover, LEGO significantly reduces sampling time compared to other methods, establishing it as a valuable enhancement for diffusion models. Our code and project page are available at https://jegzheng.github.io/LEGODiffusion.
Related papers
- Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
We propose a novel Multi-Scale State-Space Model-based (MS-Mamba) for efficient image restoration.
Our proposed method achieves new state-of-the-art performance while maintaining low computational complexity.
arXiv Detail & Related papers (2024-08-19T16:42:58Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - DLGSANet: Lightweight Dynamic Local and Global Self-Attention Networks
for Image Super-Resolution [83.47467223117361]
We propose an effective lightweight dynamic local and global self-attention network (DLGSANet) to solve image super-resolution.
Motivated by the network designs of Transformers, we develop a simple yet effective multi-head dynamic local self-attention (MHDLSA) module to extract local features efficiently.
To overcome this problem, we develop a sparse global self-attention (SparseGSA) module to select the most useful similarity values.
arXiv Detail & Related papers (2023-01-05T12:06:47Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Activating More Pixels in Image Super-Resolution Transformer [53.87533738125943]
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution.
We propose a novel Hybrid Attention Transformer (HAT) to activate more input pixels for better reconstruction.
Our overall method significantly outperforms the state-of-the-art methods by more than 1dB.
arXiv Detail & Related papers (2022-05-09T17:36:58Z) - RLFlow: Optimising Neural Network Subgraph Transformation with World
Models [0.0]
We propose a model-based agent which learns to optimise the architecture of neural networks by performing a sequence of subgraph transformations to reduce model runtime.
We show our approach can match the performance of state of the art on common convolutional networks and outperform those by up to 5% on transformer-style architectures.
arXiv Detail & Related papers (2022-05-03T11:52:54Z) - Any-resolution Training for High-resolution Image Synthesis [55.19874755679901]
Generative models operate at fixed resolution, even though natural images come in a variety of sizes.
We argue that every pixel matters and create datasets with variable-size images, collected at their native resolutions.
We introduce continuous-scale training, a process that samples patches at random scales to train a new generator with variable output resolutions.
arXiv Detail & Related papers (2022-04-14T17:59:31Z) - SDWNet: A Straight Dilated Network with Wavelet Transformation for Image
Deblurring [23.86692375792203]
Image deblurring is a computer vision problem that aims to recover a sharp image from a blurred image.
Our model uses dilated convolution to enable the obtainment of the large receptive field with high spatial resolution.
We propose a novel module using the wavelet transform, which effectively helps the network to recover clear high-frequency texture details.
arXiv Detail & Related papers (2021-10-12T07:58:10Z) - Efficient texture-aware multi-GAN for image inpainting [5.33024001730262]
Recent GAN-based (Generative adversarial networks) inpainting methods show remarkable improvements.
We propose a multi-GAN architecture improving both the performance and rendering efficiency.
arXiv Detail & Related papers (2020-09-30T14:58:03Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.