A New Causal Rule Learning Approach to Interpretable Estimation of Heterogeneous Treatment Effect
- URL: http://arxiv.org/abs/2310.06746v2
- Date: Sun, 23 Feb 2025 11:02:53 GMT
- Title: A New Causal Rule Learning Approach to Interpretable Estimation of Heterogeneous Treatment Effect
- Authors: Ying Wu, Hanzhong Liu, Kai Ren, Shujie Ma, Xiangyu Chang,
- Abstract summary: Interpretability plays a critical role in the application of statistical learning for estimating heterogeneous treatment effects.<n>In this study, we leverage a rule-based workflow to estimate and enhance our understanding of HTE for atrial septal defect.
- Score: 11.087188408510663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretability plays a critical role in the application of statistical learning for estimating heterogeneous treatment effects (HTE) for complex diseases. In this study, we leverage a rule-based workflow, namely causal rule learning (CRL) to estimate and enhance our understanding of HTE for atrial septal defect, addressing an overlooked question in previous literature: what if an individual simultaneously belongs to multiple groups with different average treatment effects? The CRL process consists of three steps: rule discovery, which generates a set of causal rules with corresponding subgroup average treatment effects; rule selection, which identifies a subset of these rules to deconstruct individual-level treatment effects as a linear combination of subgroup-level effects; and rule analysis, which outlines a detailed procedure for further analyzing each selected rule from multiple perspectives to identify the most promising rules for validation. Extensive simulation studies and real-world data analysis demonstrate that CRL outperforms other methods in providing interpretable estimates of HTE, especially when dealing with complex ground truth and sufficient sample sizes.
Related papers
- Identifying treatment response subgroups in observational time-to-event data [2.176207087460772]
Existing approaches for treatment effect estimation rely on Randomised Controlled Trials (RCTs)
RCTs tend to feature more homogeneous patient groups, making them less relevant for uncovering subgroups in the population encountered in real-world clinical practice.
Our work introduces a novel, outcome-guided, subgroup analysis strategy for identifying subgroups of treatment response in both RCTs and observational studies alike.
arXiv Detail & Related papers (2024-08-06T22:38:14Z) - CURLS: Causal Rule Learning for Subgroups with Significant Treatment Effect [22.012322558109574]
In causal inference, estimating heterogeneous treatment effects (HTE) is critical for identifying how different subgroups respond to interventions.
We propose CURLS, a novel rule learning method leveraging HTE, which can effectively describe subgroups with significant treatment effects.
arXiv Detail & Related papers (2024-07-01T06:36:27Z) - Causal Machine Learning for Moderation Effects [0.0]
We propose a new parameter, the balanced group average treatment effect (BGATE)
By taking the difference of two BGATEs, we can analyse heterogeneity more meaningfully than by comparing two GATEs.
Adding additional identifying assumptions allows specific balanced differences in treatment effects between groups to be interpreted causally.
arXiv Detail & Related papers (2024-01-16T11:34:59Z) - Machine Learning with Probabilistic Law Discovery: A Concise
Introduction [77.34726150561087]
Probabilistic Law Discovery (PLD) is a logic based Machine Learning method, which implements a variant of probabilistic rule learning.
PLD is close to Decision Tree/Random Forest methods, but it differs significantly in how relevant rules are defined.
This paper outlines the main principles of PLD, highlight its benefits and limitations and provide some application guidelines.
arXiv Detail & Related papers (2022-12-22T17:40:13Z) - Meta-analysis of individualized treatment rules via sign-coherency [3.432284729311483]
We develop a method for individual-level meta-analysis of ITRs, which jointly learns site-specific ITRs.
We also develop an adaptive procedure for model tuning, using information criteria tailored to the ITR learning problem.
arXiv Detail & Related papers (2022-11-28T15:55:55Z) - Picking on the Same Person: Does Algorithmic Monoculture lead to Outcome
Homogenization? [90.35044668396591]
A recurring theme in machine learning is algorithmic monoculture: the same systems, or systems that share components, are deployed by multiple decision-makers.
We propose the component-sharing hypothesis: if decision-makers share components like training data or specific models, then they will produce more homogeneous outcomes.
We test this hypothesis on algorithmic fairness benchmarks, demonstrating that sharing training data reliably exacerbates homogenization.
We conclude with philosophical analyses of and societal challenges for outcome homogenization, with an eye towards implications for deployed machine learning systems.
arXiv Detail & Related papers (2022-11-25T09:33:11Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
Anomaly detection aims at identifying deviant samples from the normal data distribution.
Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies.
We propose a novel hierarchical semi-supervised contrastive learning framework, for contamination-resistant anomaly detection.
arXiv Detail & Related papers (2022-07-24T18:49:26Z) - Interpretable Deep Causal Learning for Moderation Effects [0.0]
We address the problem of interpretability and targeted regularization in causal machine learning models.
We propose a novel deep counterfactual learning architecture for estimating individual treatment effects.
arXiv Detail & Related papers (2022-06-21T11:21:09Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
We investigate the task of estimating the conditional average causal effect of treatment-dosage pairs from a combination of observational data and assumptions on the causal relationships in the underlying system.
This has been a longstanding challenge for fields of study such as epidemiology or economics that require a treatment-dosage pair to make decisions.
We show empirically new state-of-the-art performance results across several benchmark datasets for this problem.
arXiv Detail & Related papers (2022-05-29T15:26:59Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - Generalized Causal Tree for Uplift Modeling [7.614863322262727]
Uplift modeling is crucial in various applications ranging from marketing and policy-making to personalized recommendations.
The main objective is to learn optimal treatment allocations for a heterogeneous population.
We propose a generalization of tree-based approaches to tackle multiple discrete and continuous-valued treatments.
arXiv Detail & Related papers (2022-02-04T22:27:49Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree
Search [10.961093227672398]
A clinically meaningful subgroup learning approach should identify the maximum number of patients who can benefit from the better treatment.
We present an optimal subgroup selection rule (SSR) that maximizes the number of selected patients.
We propose a ConstrAined PolIcy Tree seArch aLgorithm to find the optimal SSR within the interpretable decision tree class.
arXiv Detail & Related papers (2021-10-11T22:41:07Z) - On Inductive Biases for Heterogeneous Treatment Effect Estimation [91.3755431537592]
We investigate how to exploit structural similarities of an individual's potential outcomes (POs) under different treatments.
We compare three end-to-end learning strategies to overcome this problem.
arXiv Detail & Related papers (2021-06-07T16:30:46Z) - Robust Recursive Partitioning for Heterogeneous Treatment Effects with
Uncertainty Quantification [84.53697297858146]
Subgroup analysis of treatment effects plays an important role in applications from medicine to public policy to recommender systems.
Most of the current methods of subgroup analysis begin with a particular algorithm for estimating individualized treatment effects (ITE)
This paper develops a new method for subgroup analysis, R2P, that addresses all these weaknesses.
arXiv Detail & Related papers (2020-06-14T14:50:02Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.