Learning of Sea Surface Height Interpolation from Multi-variate Simulated Satellite Observations
- URL: http://arxiv.org/abs/2310.07626v3
- Date: Mon, 6 May 2024 12:12:36 GMT
- Title: Learning of Sea Surface Height Interpolation from Multi-variate Simulated Satellite Observations
- Authors: Theo Archambault, Arthur Filoche, Anastase Charantonis, Dominique Bereziat, Sylvie Thiria,
- Abstract summary: We train an Attention-Based-Decoder deep learning network (textscabed) on this data.
We evaluate ABED reconstructions when trained using either supervised or unsupervised loss functions, with or without SST information.
Based on real SSH observations from the Ocean Data Challenge 2021, we find that this learning strategy, combined with the use of SST, decreases the root mean squared error by 24% compared to OI.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Satellite-based remote sensing missions have revolutionized our understanding of the Ocean state and dynamics. Among them, space-borne altimetry provides valuable Sea Surface Height (SSH) measurements, used to estimate surface geostrophic currents. Due to the sensor technology employed, important gaps occur in SSH observations. Complete SSH maps are produced using linear Optimal Interpolations (OI) such as the widely-used Data Unification and Altimeter Combination System (DUACS). On the other hand, Sea Surface Temperature (SST) products have much higher data coverage and SST is physically linked to geostrophic currents through advection. We propose a new multi-variate Observing System Simulation Experiment (OSSE) emulating 20 years of SSH and SST satellite observations. We train an Attention-Based Encoder-Decoder deep learning network (\textsc{abed}) on this data, comparing two settings: one with access to ground truth during training and one without. On our OSSE, we compare ABED reconstructions when trained using either supervised or unsupervised loss functions, with or without SST information. We evaluate the SSH interpolations in terms of eddy detection. We also introduce a new way to transfer the learning from simulation to observations: supervised pre-training on our OSSE followed by unsupervised fine-tuning on satellite data. Based on real SSH observations from the Ocean Data Challenge 2021, we find that this learning strategy, combined with the use of SST, decreases the root mean squared error by 24% compared to OI.
Related papers
- Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization [7.444865250744234]
Internal solitary waves (ISWs) are gravity waves that are often observed in the interior ocean rather than the surface.
Cloud cover in optical remote sensing images variably obscures ground information, leading to blurred or missing surface observations.
This paper aims at altimeter-based machine learning solutions to automatically locate ISWs.
arXiv Detail & Related papers (2024-06-18T21:09:56Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - Training neural mapping schemes for satellite altimetry with simulation
data [6.591483977714996]
Deep learning schemes have emerged as appealing solutions to address space-time problems.
The scarcity of real altimetry dataset impedes the training of state-of-the-art neural schemes on real-world case-studies.
Here, we leverage both simulations of ocean dynamics and satellite altimeters to train simulation-based neural mapping schemes for the sea surface height.
arXiv Detail & Related papers (2023-09-19T14:32:25Z) - Transforming Observations of Ocean Temperature with a Deep Convolutional
Residual Regressive Neural Network [0.0]
Sea surface temperature (SST) is an essential climate variable that can be measured via ground truth, remote sensing, or hybrid model methodologies.
Here, we celebrate SST surveillance progress via the application of a few relevant technological advances from the late 20th and early 21st century.
We develop our existing water cycle observation framework, Flux to Flow (F2F), to fuse AMSR-E and MODIS into a higher resolution product.
Our neural network architecture is constrained to a deep convolutional residual regressive neural network.
arXiv Detail & Related papers (2023-06-16T17:35:11Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Scale-aware neural calibration for wide swath altimetry observations [0.0]
Sea surface height (SSH) is a key geophysical parameter for monitoring and studying meso-scale surface ocean dynamics.
For several decades, the mapping of SSH products at regional and global scales has relied on nadir satellite altimeters.
The Surface Water and Ocean Topography (SWOT) mission deploys a new sensor that acquires for the first time wide-swath two-dimensional observations of the SSH.
arXiv Detail & Related papers (2023-02-09T08:46:40Z) - Tensor Decompositions for Hyperspectral Data Processing in Remote
Sensing: A Comprehensive Review [85.36368666877412]
hyperspectral (HS) remote sensing (RS) imaging has provided a significant amount of spatial and spectral information for the observation and analysis of the Earth's surface.
The recent advancement and even revolution of the HS RS technique offer opportunities to realize the full potential of various applications.
Due to the maintenance of the 3-D HS inherent structure, tensor decomposition has aroused widespread concern and research in HS data processing tasks.
arXiv Detail & Related papers (2022-05-13T00:39:23Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training.
Thanks to the capability of scale-consistent prediction, we show that our monocular-trained deep networks are readily integrated into the ORB-SLAM2 system.
The proposed hybrid Pseudo-RGBD SLAM shows compelling results in KITTI, and it generalizes well to the KAIST dataset without additional training.
arXiv Detail & Related papers (2021-05-25T02:17:56Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
This report presents design considerations for automatically generating satellite imagery datasets for training machine learning models.
We discuss issues faced from the point of view of deep neural network training and evaluation.
arXiv Detail & Related papers (2021-04-28T15:13:12Z) - Filtering Internal Tides From Wide-Swath Altimeter Data Using
Convolutional Neural Networks [9.541153192112194]
We propose the use of convolutional neural networks (ConvNets) to estimate fields free of internal tide signals.
We also investigate the relevance of considering additional data from other sea surface variables such as sea surface temperature (SST)
arXiv Detail & Related papers (2020-05-03T14:02:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.