Latent Point Collapse on a Low Dimensional Embedding in Deep Neural Network Classifiers
- URL: http://arxiv.org/abs/2310.08224v5
- Date: Sat, 08 Feb 2025 11:34:08 GMT
- Title: Latent Point Collapse on a Low Dimensional Embedding in Deep Neural Network Classifiers
- Authors: Luigi Sbailò, Luca Ghiringhelli,
- Abstract summary: We propose a method to induce the collapse of latent representations belonging to the same class into a single point.
The proposed approach is straightforward to implement and yields substantial improvements in discnative feature embeddings.
- Score: 0.0
- License:
- Abstract: The configuration of latent representations plays a critical role in determining the performance of deep neural network classifiers. In particular, the emergence of well-separated class embeddings in the latent space has been shown to improve both generalization and robustness. In this paper, we propose a method to induce the collapse of latent representations belonging to the same class into a single point, which enhances class separability in the latent space while enforcing Lipschitz continuity in the network. We demonstrate that this phenomenon, which we call \textit{latent point collapse}, is achieved by adding a strong $L_2$ penalty on the penultimate-layer representations and is the result of a push-pull tension developed with the cross-entropy loss function. In addition, we show the practical utility of applying this compressing loss term to the latent representations of a low-dimensional linear penultimate layer. The proposed approach is straightforward to implement and yields substantial improvements in discriminative feature embeddings, along with remarkable gains in robustness to input perturbations.
Related papers
- Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep unrolling is an emerging learning-to-optimize method that unrolls a truncated iterative algorithm in the layers of a trainable neural network.
We show that convergence guarantees and generalizability of the unrolled networks are still open theoretical problems.
We numerically assess unrolled architectures trained under the proposed constraints in two different applications.
arXiv Detail & Related papers (2023-12-25T18:51:23Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Convergence and Implicit Regularization Properties of Gradient Descent
for Deep Residual Networks [7.090165638014331]
We prove linear convergence of gradient descent to a global minimum for the training of deep residual networks with constant layer width and smooth activation function.
We show that the trained weights, as a function of the layer index, admits a scaling limit which is H"older continuous as the depth of the network tends to infinity.
arXiv Detail & Related papers (2022-04-14T22:50:28Z) - An Intermediate-level Attack Framework on The Basis of Linear Regression [89.85593878754571]
This paper substantially extends our work published at ECCV, in which an intermediate-level attack was proposed to improve the transferability of some baseline adversarial examples.
We advocate to establish a direct linear mapping from the intermediate-level discrepancies (between adversarial features and benign features) to classification prediction loss of the adversarial example.
We show that 1) a variety of linear regression models can all be considered in order to establish the mapping, 2) the magnitude of the finally obtained intermediate-level discrepancy is linearly correlated with adversarial transferability, and 3) further boost of the performance can be achieved by performing multiple runs of the baseline attack with
arXiv Detail & Related papers (2022-03-21T03:54:53Z) - Discriminability-enforcing loss to improve representation learning [20.4701676109641]
We introduce a new loss term inspired by the Gini impurity to minimize the entropy of individual high-level features.
Although our Gini loss induces highly-discriminative features, it does not ensure that the distribution of the high-level features matches the distribution of the classes.
Our empirical results show that integrating our novel loss terms into the training objective consistently outperforms the models trained with cross-entropy alone.
arXiv Detail & Related papers (2022-02-14T22:31:37Z) - Defensive Tensorization [113.96183766922393]
We propose tensor defensiveization, an adversarial defence technique that leverages a latent high-order factorization of the network.
We empirically demonstrate the effectiveness of our approach on standard image classification benchmarks.
We validate the versatility of our approach across domains and low-precision architectures by considering an audio task and binary networks.
arXiv Detail & Related papers (2021-10-26T17:00:16Z) - An Unconstrained Layer-Peeled Perspective on Neural Collapse [20.75423143311858]
We introduce a surrogate model called the unconstrained layer-peeled model (ULPM)
We prove that gradient flow on this model converges to critical points of a minimum-norm separation problem exhibiting neural collapse in its global minimizer.
We show that our results also hold during the training of neural networks in real-world tasks when explicit regularization or weight decay is not used.
arXiv Detail & Related papers (2021-10-06T14:18:47Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
neural network models that perfectly fit noisy data can generalize well to unseen test data.
We consider interpolating two-layer linear neural networks trained with gradient flow on the squared loss and derive bounds on the excess risk.
arXiv Detail & Related papers (2021-08-25T22:01:01Z) - Eccentric Regularization: Minimizing Hyperspherical Energy without
explicit projection [0.913755431537592]
We introduce a novel regularizing loss function which simulates a pairwise repulsive force between items.
We show that minimizing this loss function in isolation achieves a hyperspherical distribution.
We apply this method of Eccentric Regularization to an autoencoder, and demonstrate its effectiveness in image generation, representation learning and downstream classification tasks.
arXiv Detail & Related papers (2021-04-23T13:55:17Z) - Implicit Under-Parameterization Inhibits Data-Efficient Deep
Reinforcement Learning [97.28695683236981]
More gradient updates decrease the expressivity of the current value network.
We demonstrate this phenomenon on Atari and Gym benchmarks, in both offline and online RL settings.
arXiv Detail & Related papers (2020-10-27T17:55:16Z) - Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
Trained with the Logistic Loss [0.0]
Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks.
We analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations.
arXiv Detail & Related papers (2020-02-11T15:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.