論文の概要: Towards Robust Multi-Modal Reasoning via Model Selection
- arxiv url: http://arxiv.org/abs/2310.08446v2
- Date: Sat, 23 Mar 2024 14:01:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 02:45:56.340489
- Title: Towards Robust Multi-Modal Reasoning via Model Selection
- Title(参考訳): モデル選択によるロバストなマルチモーダル推論に向けて
- Authors: Xiangyan Liu, Rongxue Li, Wei Ji, Tao Lin,
- Abstract要約: LLMはエージェントの"脳"として機能し、協調的な多段階タスク解決のための複数のツールを編成する。
我々はテスト時に無視できるランタイムオーバーヘッドを持つプラグインとして、$textitM3$フレームワークを提案する。
実験の結果,我々のフレームワークは,ユーザ入力とサブタスク依存の両方を考慮した動的モデル選択を可能にすることがわかった。
- 参考スコア(独自算出の注目度): 7.6621866737827045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reasoning capabilities of LLM (Large Language Model) are widely acknowledged in recent research, inspiring studies on tool learning and autonomous agents. LLM serves as the "brain" of the agent, orchestrating multiple tools for collaborative multi-step task solving. Unlike methods invoking tools like calculators or weather APIs for straightforward tasks, multi-modal agents excel by integrating diverse AI models for complex challenges. However, current multi-modal agents neglect the significance of model selection: they primarily focus on the planning and execution phases, and will only invoke predefined task-specific models for each subtask, making the execution fragile. Meanwhile, other traditional model selection methods are either incompatible with or suboptimal for the multi-modal agent scenarios, due to ignorance of dependencies among subtasks arising by multi-step reasoning. To this end, we identify the key challenges therein and propose the $\textit{M}^3$ framework as a plug-in with negligible runtime overhead at test-time. This framework improves model selection and bolsters the robustness of multi-modal agents in multi-step reasoning. In the absence of suitable benchmarks, we create MS-GQA, a new dataset specifically designed to investigate the model selection challenge in multi-modal agents. Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies, thereby robustifying the overall reasoning process. Our code and benchmark: https://github.com/LINs-lab/M3.
- Abstract(参考訳): LLM(Large Language Model)の推論能力は、最近の研究で広く認知されており、ツール学習と自律エージェントの研究を刺激している。
LLMはエージェントの"脳"として機能し、協調的な多段階タスク解決のための複数のツールを編成する。
簡単なタスクのために電卓や天気予報APIなどのツールを呼び出す方法とは異なり、複雑な課題のために多様なAIモデルを統合することで、マルチモーダルエージェントが優れている。
しかし、現在のマルチモーダルエージェントはモデル選択の重要性を無視しており、主に計画と実行フェーズに重点を置いており、各サブタスクに対して事前に定義されたタスク固有のモデルを起動するだけで、実行が脆弱になる。
一方、他の伝統的なモデル選択手法は、マルチステップの推論によって生じるサブタスク間の依存関係を無視するため、マルチモーダルエージェントのシナリオに不適合または最適である。
この目的のために、主要な課題を特定し、テスト時に無視できるランタイムオーバーヘッドを持つプラグインとして$\textit{M}^3$フレームワークを提案する。
このフレームワークはモデル選択を改善し、マルチステップ推論におけるマルチモーダルエージェントの堅牢性を高める。
適切なベンチマークがなければ、マルチモーダルエージェントのモデル選択課題を調査するための新しいデータセットであるMS-GQAを作成する。
実験の結果,我々のフレームワークはユーザ入力とサブタスク依存の両方を考慮した動的モデル選択が可能であり,全体としての推論プロセスの堅牢化を実現していることがわかった。
私たちのコードとベンチマークは、https://github.com/LINs-lab/M3。
関連論文リスト
- UniMEL: A Unified Framework for Multimodal Entity Linking with Large Language Models [0.42832989850721054]
MEL(Multimodal Entities Linking)は、ウィキペディアのようなマルチモーダル知識ベースの参照エンティティに、多モーダルコンテキスト内で曖昧な言及をリンクすることを目的とした重要なタスクである。
既存の方法はMELタスクを過度に複雑にし、視覚的意味情報を見渡す。
大規模言語モデルを用いたマルチモーダル・エンティティ・リンクタスクを処理するための新しいパラダイムを確立する統一フレームワークUniMELを提案する。
論文 参考訳(メタデータ) (2024-07-23T03:58:08Z) - Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency for Tool Planning [14.635361844362794]
Smurfs'は、大規模言語モデルの応用に革命をもたらすために設計された最先端のマルチエージェントフレームワークである。
Smurfは、余分なコストなしで複雑なタスクを解くモデルの能力を高めることができる。
論文 参考訳(メタデータ) (2024-05-09T17:49:04Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - Merging Multi-Task Models via Weight-Ensembling Mixture of Experts [64.94129594112557]
異なるタスクでトレーニングされたTransformerベースのモデルを単一の統一モデルにマージすることで、すべてのタスクを同時に実行できる。
従来の手法は、タスク演算によって例示され、効率的かつスケーラブルであることが証明されている。
本稿では,Transformer層をMoEモジュールにアップスケーリングしながら,ほとんどのパラメータをマージすることを提案する。
論文 参考訳(メタデータ) (2024-02-01T08:58:57Z) - Toward Robust Multimodal Learning using Multimodal Foundational Models [30.755818450393637]
マルチモーダル基礎モデルを用いたロバストなマルチモーダル学習に向けたTRMLを提案する。
TRMLは、欠落したモダリティを置き換えるために生成された仮想モダリティを使用する。
またセマンティックマッチング学習モジュールを設計し、セマンティック空間の生成とモダリティの欠如を協調する。
論文 参考訳(メタデータ) (2024-01-20T04:46:43Z) - Generative Multimodal Models are In-Context Learners [60.50927925426832]
我々は37億のパラメータを持つ生成的マルチモーダルモデルであるEmu2を紹介し、大規模マルチモーダルシーケンスで訓練する。
Emu2は、マルチモーダルなインコンテキスト学習能力を示し、オンザフライ推論を必要とするタスクを解決しようとさえしている。
論文 参考訳(メタデータ) (2023-12-20T18:59:58Z) - Multipath agents for modular multitask ML systems [2.579908688646812]
提案した研究は、複数のメソッドを異なるエージェントとして定義できる新しい方法論を紹介した。
エージェントは、与えられたタスクに対するMLモデルの生成と改善のために協力し、競争することができる。
論文 参考訳(メタデータ) (2023-02-06T11:57:45Z) - OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist
Models [72.8156832931841]
ジェネリストモデルは、単一のモデル内でタスクに依存しない方法で多様なマルチモーダルタスクを実行することができる。
マルチモーダル命令と呼ばれる宣言型タスクインタフェース上に構築された汎用モデル学習システムOFASysをリリースする。
論文 参考訳(メタデータ) (2022-12-08T17:07:09Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
マルチモーダル空間における条件生成のための新しい枠組みを提案する。
潜在変数を使って一般化可能な学習パターンをモデル化する。
推論では、潜伏変数は複数の出力モードに対応する最適解を見つけるために最適化される。
論文 参考訳(メタデータ) (2020-10-07T03:11:34Z) - ManyModalQA: Modality Disambiguation and QA over Diverse Inputs [73.93607719921945]
本稿では, エージェントが3つの異なるモダリティを考慮し, 質問に答えなければならない, マルチモーダルな質問応答課題, ManyModalQAを提案する。
われわれはウィキペディアをスクラップしてデータを収集し、クラウドソーシングを利用して質問と回答のペアを収集する。
論文 参考訳(メタデータ) (2020-01-22T14:39:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。