論文の概要: PU-Ray: Domain-Independent Point Cloud Upsampling via Ray Marching on Neural Implicit Surface
- arxiv url: http://arxiv.org/abs/2310.08755v2
- Date: Fri, 15 Mar 2024 23:04:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 03:32:38.110708
- Title: PU-Ray: Domain-Independent Point Cloud Upsampling via Ray Marching on Neural Implicit Surface
- Title(参考訳): PU-ray: ニューラルインシシト表面上の光マーチングによるドメイン非依存点雲のアップサンプリング
- Authors: Sangwon Lim, Karim El-Basyouny, Yee Hong Yang,
- Abstract要約: 我々は任意のレートで新しいレイベースのアップサンプリング手法を提案し、各クエリ線とその対応するパッチに対して深さ予測を行う。
非符号距離関数 (UDF) で定義された神経暗示面上の球面追跡線マーチングアルゴリズムをシミュレーションした。
ルールベースの中間点問合せサンプリング手法は, 最寄りの近傍の復元損失関数を用いて訓練されたエンドツーエンドモデルを必要としない, より均等な分散点を生成する。
- 参考スコア(独自算出の注目度): 5.78575346449322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While recent advancements in deep-learning point cloud upsampling methods have improved the input to intelligent transportation systems, they still suffer from issues of domain dependency between synthetic and real-scanned point clouds. This paper addresses the above issues by proposing a new ray-based upsampling approach with an arbitrary rate, where a depth prediction is made for each query ray and its corresponding patch. Our novel method simulates the sphere-tracing ray marching algorithm on the neural implicit surface defined with an unsigned distance function (UDF) to achieve more precise and stable ray-depth predictions by training a point-transformer-based network. The rule-based mid-point query sampling method generates more evenly distributed points without requiring an end-to-end model trained using a nearest-neighbor-based reconstruction loss function, which may be biased towards the training dataset. Self-supervised learning becomes possible with accurate ground truths within the input point cloud. The results demonstrate the method's versatility across domains and training scenarios with limited computational resources and training data. Comprehensive analyses of synthetic and real-scanned applications provide empirical evidence for the significance of the upsampling task across the computer vision and graphics domains to real-world applications of ITS.
- Abstract(参考訳): 近年のディープラーニング・ポイント・クラウド・アップサンプリング手法の進歩はインテリジェント・トランスポート・システムへの入力を改善しているが、それでも合成と実スキャンされたポイント・クラウド間のドメイン依存の問題に悩まされている。
本稿では,各問合せ線とその対応するパッチに対する深さ予測を行うため,任意のレートで新しいレイベースアップサンプリング手法を提案する。
提案手法は,非符号距離関数 (UDF) で定義された神経暗示面上の球面追跡線マーキングアルゴリズムをシミュレートし,点変換器ネットワークをトレーニングすることにより,より正確で安定した線深予測を実現する。
規則に基づく中点問合せサンプリング手法は, 最寄りの近接型再構成損失関数を用いて訓練されたエンドツーエンドモデルを必要とせずに, より均等に分散した点を生成する。
自己教師付き学習は、入力ポイントクラウド内の正確な基底真理によって実現される。
その結果、ドメイン間の汎用性と、限られた計算資源とトレーニングデータを用いたトレーニングシナリオが示された。
合成および実スキャンされたアプリケーションの包括的分析は、コンピュータビジョンとグラフィックドメインにわたるアップサンプリングタスクがITSの現実的な応用に重要であることを示す実証的な証拠を提供する。
関連論文リスト
- Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
Voxel-based Network (textbfPU-VoxelNet) を用いた任意のスケールのクラウド・アップサンプリング・フレームワークを提案する。
ボクセル表現から継承された完全性と規則性により、ボクセルベースのネットワークは3次元表面を近似する事前定義されたグリッド空間を提供することができる。
密度誘導グリッド再サンプリング法を開発し、高忠実度点を生成するとともに、サンプリング出力を効果的に回避する。
論文 参考訳(メタデータ) (2024-03-08T07:31:14Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
本稿では,フローフィールドデータの超高分解能化のための特徴強調型ニューラルインシシット表現(FFEINR)を提案する。
モデル構造とサンプリング分解能の観点から、暗黙のニューラル表現を最大限に活用することができる。
FFEINRのトレーニングプロセスは、入力層に機能拡張を導入することで容易になる。
論文 参考訳(メタデータ) (2023-08-24T02:28:18Z) - AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance
Fields [8.214695794896127]
新たなビュー合成は、スパース観測から直接神経放射場を学習することで、近年革新されている。
この新たなパラダイムによる画像のレンダリングは、ボリュームレンダリング方程式の正確な4分の1は、各光線に対して大量のサンプルを必要とするため、遅い。
本稿では,必要なサンプル点数を最大限に削減する方法を学習し,方向性を示す新しいデュアルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-21T05:59:13Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
そこで本研究では,自己監督型および倍率フレキシブルな点雲を同時にアップサンプリングする手法を提案する。
実験結果から, 自己教師あり学習に基づく手法は, 教師あり学習に基づく手法よりも, 競争力や性能が向上することが示された。
論文 参考訳(メタデータ) (2022-04-18T07:18:25Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDFは実時間符号付き距離場再構成のための連続学習システムである。
より正確な再構築と、衝突コストと勾配のより良い近似を生成する。
論文 参考訳(メタデータ) (2022-04-05T15:48:39Z) - Quasi-Balanced Self-Training on Noise-Aware Synthesis of Object Point
Clouds for Closing Domain Gap [34.590531549797355]
本稿では,CADモデルへのスペックルパターンの投影によるステレオ画像のレンダリングにより,オブジェクト・ポイント・クラウドを物理的にリアルに合成する統合スキームを提案する。
実験により,本手法の有効性,および各モジュールが点クラウド分類における教師なし領域適応に有効であることを検証できる。
論文 参考訳(メタデータ) (2022-03-08T03:44:49Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
実際のスキャンされたスパースデータからトレーニング用の大規模なペアリングスパーススキャンポイントセットを得るのは高価で面倒です。
本研究では,SPU-Net と呼ばれる自己監視型点群アップサンプリングネットワークを提案する。
本研究では,合成データと実データの両方について様々な実験を行い,最先端の教師付き手法と同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-08T14:14:09Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
LiDARデータ上でディープニューラルネットワーク(DNN)をトレーニングするには、大規模なポイントワイドアノテーションが必要である。
シミュレーション・トゥ・リアル・ドメイン適応(SRDA)は、DNNを無制限の合成データと自動生成されたラベルで訓練する。
ePointDAは、自己教師付きドロップアウトノイズレンダリング、統計不変および空間適応型特徴アライメント、転送可能なセグメンテーション学習の3つのモジュールで構成されている。
論文 参考訳(メタデータ) (2020-09-07T23:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。