論文の概要: A Case-Based Persistent Memory for a Large Language Model
- arxiv url: http://arxiv.org/abs/2310.08842v1
- Date: Fri, 13 Oct 2023 03:56:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 14:32:30.203463
- Title: A Case-Based Persistent Memory for a Large Language Model
- Title(参考訳): 大規模言語モデルのためのケースベース永続メモリ
- Authors: Ian Watson
- Abstract要約: 問題解決の方法論としてのケースベース推論(CBR)は、任意の適切な計算手法を用いることができる。
最近のAIのブレークスルーを可能にした基盤となる技術開発は、CBRと強力なシナジーを持っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Case-based reasoning (CBR) as a methodology for problem-solving can use any
appropriate computational technique. This position paper argues that CBR
researchers have somewhat overlooked recent developments in deep learning and
large language models (LLMs). The underlying technical developments that have
enabled the recent breakthroughs in AI have strong synergies with CBR and could
be used to provide a persistent memory for LLMs to make progress towards
Artificial General Intelligence.
- Abstract(参考訳): 問題解決の方法論としてのケースベース推論(CBR)は、任意の適切な計算手法を用いることができる。
本稿では、cbrの研究者がディープラーニングと大規模言語モデル(llm)の最近の進歩を少し見落としていることを論じる。
最近のAIのブレークスルーを可能にした基盤となる技術開発は、CBRと強力なシナジーを持ち、LLMが人工知能に向けて前進するための永続的なメモリを提供するために使用できる。
関連論文リスト
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Tractable Offline Learning of Regular Decision Processes [50.11277112628193]
この研究は、正則決定過程(RDP)と呼ばれる非マルコフ環境のクラスにおけるオフライン強化学習(RL)を研究する。
インスは、未来の観測と過去の相互作用からの報酬の未知の依存を実験的に捉えることができる。
多くのアルゴリズムは、まずこの未知の依存関係を自動学習技術を用いて再構築する。
論文 参考訳(メタデータ) (2024-09-04T14:26:58Z) - RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation [54.707460684650584]
大きな言語モデル(LLM)は対話、推論、知識保持における人間レベルの能力を示す。
現在の研究は、LLMに外部知識を組み込むことによって、このボトルネックに対処している。
RAGLABはモジュール的で研究指向のオープンソースライブラリで、6つの既存のアルゴリズムを再現し、RAGアルゴリズムを調査するための包括的なエコシステムを提供する。
論文 参考訳(メタデータ) (2024-08-21T07:20:48Z) - Can formal argumentative reasoning enhance LLMs performances? [0.3659498819753633]
本稿では,Large Language Models (LLM) の性能に及ぼす計算論証セマンティクスの導入効果を評価するパイプライン (MQArgEng) を提案する。
調査の結果、MQArgEngは、調査対象のトピックのカテゴリの大部分で適度なパフォーマンス向上をもたらし、将来性を示し、さらなる研究を保証していることが示された。
論文 参考訳(メタデータ) (2024-05-16T22:09:31Z) - Generative AI for Synthetic Data Generation: Methods, Challenges and the
Future [12.506811635026907]
大規模言語モデル(LLM)から合成データを生成する研究の最近の動向
本稿では,タスク固有トレーニングデータの生成にこれらの巨大なLCMを活用する高度な技術について述べる。
論文 参考訳(メタデータ) (2024-03-07T03:38:44Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Resource allocation optimization using artificial intelligence methods
in various computing paradigms: A Review [7.738849852406729]
本稿では,資源配分最適化のための人工知能(AI)手法の適用について,総合的な文献レビューを行う。
我々の知る限りでは、異なる計算パラダイムにおけるAIベースのリソース割り当てアプローチに関する既存のレビューはない。
論文 参考訳(メタデータ) (2022-03-23T10:31:15Z) - A Methodological Approach to Model CBR-based Systems [0.0]
ケースベースの推論(CBR)は、管理、医療、デザイン、建設、小売、スマートグリッドといった領域で集中的に利用されるAI技術である。
主なCBRデプロイメントの課題の1つは、ターゲットのシステムモデリングプロセスである。
本稿では,CBRに基づくアプリケーションをモデル化するための方法論的アプローチを提案する。
論文 参考訳(メタデータ) (2020-09-09T15:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。