論文の概要: A Hybrid Transfer Learning Assisted Decision Support System for Accurate
Prediction of Alzheimer Disease
- arxiv url: http://arxiv.org/abs/2310.08888v1
- Date: Fri, 13 Oct 2023 06:48:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 14:12:42.058025
- Title: A Hybrid Transfer Learning Assisted Decision Support System for Accurate
Prediction of Alzheimer Disease
- Title(参考訳): アルツハイマー病の正確な予測のためのハイブリッドトランスファー学習支援意思決定支援システム
- Authors: Mahin Khan Mahadi, Abdullah Abdullah, Jamal Uddin, Asif Newaz
- Abstract要約: アルツハイマー病は高齢者で最も一般的な長期疾患である。
ディープニューラルモデルは一般的な機械学習よりも正確で効果的である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's disease (AD) is the most common long-term illness in elderly
people. In recent years, deep learning has become popular in the area of
medical imaging and has had a lot of success there. It has become the most
effective way to look at medical images. When it comes to detecting AD, the
deep neural model is more accurate and effective than general machine learning.
Our research contributes to the development of a more comprehensive
understanding and detection of the disease by identifying four distinct classes
that are predictive of AD with a high weighted accuracy of 98.91%. A unique
strategy has been proposed to improve the accuracy of the imbalance dataset
classification problem via the combination of ensemble averaging models and
five different transfer learning models in this study.
EfficientNetB0+Resnet152(effnet+res152) and
InceptionV3+EfficientNetB0+Resnet50(incep+effnet+res50) models have been
fine-tuned and have reached the highest weighted accuracy for multi-class AD
stage classifications.
- Abstract(参考訳): アルツハイマー病(英語: Alzheimer's disease, AD)は、高齢者で最も多い長期疾患である。
近年,医用画像の分野では深層学習が普及し,多くの成功を収めている。
医療画像を見る上で最も効果的な方法となっている。
ADを検出する場合、ディープニューラルネットワークは一般的な機械学習よりも正確で効果的である。
本研究は,adを高い重み付け精度で予測する4つの異なるクラスを98.91%の精度で同定し,より包括的な疾患の理解と検出に寄与する。
本研究では,アンサンブル平均化モデルと5つの異なる転送学習モデルを組み合わせて,不均衡データセット分類問題の精度を向上させるための一意な戦略を提案する。
効率的なNetB0+Resnet152(effnet+res152)およびInceptionV3+EfficientNetB0+Resnet50(incep+effnet+res50)モデルは細調整され、マルチクラスのADステージ分類において最高の重み付け精度に達した。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
本稿では,糖尿病網膜症の早期発見と管理を目的としたアンサンブル学習手法を提案する。
提案したモデルはAPTOSデータセット上でテストされ、以前のモデルと比較して検証精度(99%)の優位性を示している。
論文 参考訳(メタデータ) (2024-07-25T04:09:17Z) - Adapting Machine Learning Diagnostic Models to New Populations Using a Small Amount of Data: Results from Clinical Neuroscience [21.420302408947194]
我々は、ソースグループからのデータを最適に組み合わせ、ターゲットグループで予測する、重み付き経験的リスク最小化手法を開発した。
本研究では,アルツハイマー病の診断と脳年齢推定のためのMLモデルを構築するため,20の神経画像研究から15,363人のマルチソースデータに適用した。
論文 参考訳(メタデータ) (2023-08-06T18:05:39Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
現在のディープラーニングモデルは、新しいクラスを学ぶ際に古い知識を破滅的に忘れることによって特徴づけられる。
人間の脳における新しい知識の学習プロセスに着想を得て,連続学習のためのベイズ生成モデルを提案する。
論文 参考訳(メタデータ) (2022-04-28T08:41:51Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Novel Deep Learning Architecture for Heart Disease Prediction using
Convolutional Neural Network [0.0]
心臓病は、世界中の多くの人々の生活を妨げる最も致命的な病気の1つである。
本稿では,健康な人と非健康な人の分類に1次元畳み込みニューラルネットワークを用いた新しいディープラーニングアーキテクチャを提案する。
提案するネットワークは、データセット上で97%以上のトレーニング精度と96%のテスト精度を達成する。
論文 参考訳(メタデータ) (2021-05-22T22:00:57Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
本研究では,長尾データを知識に基づいて複数のクラスサブセットに分割し,クラスサブセット学習を提案する。
モデルがサブセット固有の知識の学習に集中するように強制する。
提案手法は長期網膜疾患認識タスクに有効であることが判明した。
論文 参考訳(メタデータ) (2021-04-22T13:39:33Z) - Multimodal Inductive Transfer Learning for Detection of Alzheimer's
Dementia and its Severity [39.57255380551913]
本稿では,音響的,認知的,言語的特徴を活用してマルチモーダルアンサンブルシステムを構築する新しいアーキテクチャを提案する。
時相特性を持つ特殊な人工ニューラルネットワークを使用して、アルツハイマー認知症(AD)とその重症度を検出する。
本システムでは,AD分類では最先端試験精度,精度,リコール,F1スコアが83.3%,MMSEスコア評価では4.60の最先端試験根平均二乗誤差(RMSE)が得られた。
論文 参考訳(メタデータ) (2020-08-30T21:47:26Z) - Application of Machine Learning to Predict the Risk of Alzheimer's
Disease: An Accurate and Practical Solution for Early Diagnostics [1.1470070927586016]
アルツハイマー病(AD)は500万人以上のアメリカ人の認知能力を悪化させ、医療システムに多大な負担をかけている。
本稿では,医療画像のない,臨床訪問や検査の少ないAD開発のための機械学習予測モデルを提案する。
本モデルは,2つの顕著な研究結果から,人口統計,バイオマーカー,認知テストデータを用いて訓練し,検証した。
論文 参考訳(メタデータ) (2020-06-02T14:52:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。