論文の概要: Learning To Teach Large Language Models Logical Reasoning
- arxiv url: http://arxiv.org/abs/2310.09158v1
- Date: Fri, 13 Oct 2023 14:53:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 12:28:41.958791
- Title: Learning To Teach Large Language Models Logical Reasoning
- Title(参考訳): 大規模言語モデルの論理推論を学習する
- Authors: Meiqi Chen, Yubo Ma, Kaitao Song, Yixin Cao, Yan Zhang, and Dongsheng
Li
- Abstract要約: 大規模言語モデル(LLM)は、学術と産業の両方から大きな注目を集めている。
しかし、現在のLLMは、その固有の問題のために、実用的な推論タスクにおいて信頼性の低いコンテンツを出力している。
- 参考スコア(独自算出の注目度): 33.88499005859982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have gained enormous attention from both
academia and industry, due to their exceptional ability in language generation
and extremely powerful generalization. However, current LLMs still output
unreliable content in practical reasoning tasks due to their inherent issues
(e.g., hallucination). To better disentangle this problem, in this paper, we
conduct an in-depth investigation to systematically explore the capability of
LLMs in logical reasoning. More in detail, we first investigate the deficiency
of LLMs in logical reasoning on different tasks, including event relation
extraction and deductive reasoning. Our study demonstrates that LLMs are not
good reasoners in solving tasks with rigorous reasoning and will produce
counterfactual answers, which require us to iteratively refine. Therefore, we
comprehensively explore different strategies to endow LLMs with logical
reasoning ability, and thus enable them to generate more logically consistent
answers across different scenarios. Based on our approach, we also contribute a
synthesized dataset (LLM-LR) involving multi-hop reasoning for evaluation and
pre-training. Extensive quantitative and qualitative analyses on different
tasks also validate the effectiveness and necessity of teaching LLMs with logic
and provide insights for solving practical tasks with LLMs in future work.
- Abstract(参考訳): 大規模言語モデル(llm)は、その言語生成能力と非常に強力な一般化により、学界と産業の両方から大きな注目を集めている。
しかし、現在のLLMは、その固有の問題(幻覚など)のために、実用的な推論タスクにおいて信頼できないコンテンツを出力している。
本稿では,論理推論におけるllmの能力を体系的に探究するために,詳細な調査を行う。
より詳しくは、イベント関係抽出や帰納的推論を含む様々なタスクにおける論理的推論におけるLLMの欠如について検討する。
我々の研究は、llmが厳密な推論でタスクを解決するのに適していないことを示し、反事実的回答を生み出し、反復的に洗練する必要がある。
そこで我々は,LLMを論理的推論能力で支援する戦略を包括的に検討し,複数のシナリオにまたがってより論理的に一貫した回答を得られるようにした。
提案手法では,評価と事前学習のためのマルチホップ推論を含む合成データセット(LLM-LR)も提案する。
様々なタスクに関する大規模で質的な分析は、LLMを論理で教えることの有効性と必要性を検証し、将来の作業でLLMで実用的なタスクを解くための洞察を提供する。
関連論文リスト
- Reversal of Thought: Enhancing Large Language Models with Preference-Guided Reverse Reasoning Warm-up [9.42385235462794]
大規模言語モデル(LLM)は、推論タスクにおいて顕著な性能を示すが、数学的および複雑な論理的推論において制限に直面している。
LLMの論理的推論能力の向上を目的とした新しいフレームワークであるReversal of Thought (RoT)を提案する。
RoT は Preference-Guided Reverse Reasoning warm-up 戦略を利用している。
論文 参考訳(メタデータ) (2024-10-16T07:44:28Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - CLR-Fact: Evaluating the Complex Logical Reasoning Capability of Large Language Models over Factual Knowledge [44.59258397967782]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにまたがる印象的な機能を示している。
本稿では,LLMの複雑な論理的推論能力の体系的評価について述べる。
LLMは一般世界の知識の推論に優れるが、専門分野固有の知識では重大な課題に直面している。
論文 参考訳(メタデータ) (2024-07-30T05:40:32Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
大規模言語モデル (LLM) は, 推論作業における乱雑な内容や無関係な内容を扱う際に, 人間の認知バイアスに類似した障害パターンを示す。
コンシス・アンド・オーガナイズド・パーセプション(COP)という新しい推論手法を提案する。
COPは与えられたステートメントを慎重に分析し、冗長性を効率的に排除しながら、最も関連する情報を識別する。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。