論文の概要: Signal reconstruction using determinantal sampling
- arxiv url: http://arxiv.org/abs/2310.09437v2
- Date: Tue, 12 Nov 2024 04:57:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:16:28.019133
- Title: Signal reconstruction using determinantal sampling
- Title(参考訳): 行列サンプリングを用いた信号再構成
- Authors: Ayoub Belhadji, Rémi Bardenet, Pierre Chainais,
- Abstract要約: ランダムなノード集合に対する有限個の評価から, 2乗可積分関数の近似について検討する。
決定点過程とその混合物は, 高速収束速度が得られることを示す。
- 参考スコア(独自算出の注目度): 13.531952725283027
- License:
- Abstract: We study the approximation of a square-integrable function from a finite number of evaluations on a random set of nodes according to a well-chosen distribution. This is particularly relevant when the function is assumed to belong to a reproducing kernel Hilbert space (RKHS). This work proposes to combine several natural finite-dimensional approximations based two possible probability distributions of nodes. These distributions are related to determinantal point processes, and use the kernel of the RKHS to favor RKHS-adapted regularity in the random design. While previous work on determinantal sampling relied on the RKHS norm, we prove mean-square guarantees in $L^2$ norm. We show that determinantal point processes and mixtures thereof can yield fast convergence rates. Our results also shed light on how the rate changes as more smoothness is assumed, a phenomenon known as superconvergence. Besides, determinantal sampling generalizes i.i.d. sampling from the Christoffel function which is standard in the literature. More importantly, determinantal sampling guarantees the so-called instance optimality property for a smaller number of function evaluations than i.i.d. sampling.
- Abstract(参考訳): ランダムなノードの集合上での有限個の評価から正方積分関数の近似をウェル・チョーゼン分布に従って検討する。
これは、函数が再生核ヒルベルト空間(RKHS)に属すると仮定されるときに特に関係がある。
この研究は、ノードの2つの可能な確率分布に基づいて、いくつかの自然な有限次元近似を組み合わせることを提案する。
これらの分布は決定点過程と関連しており、ランダム設計においてRKHS適応正規性を支持するためにRKHSのカーネルを使用する。
従来はRKHS法則に依拠していたが, 平均二乗保証は$L^2$法則で証明した。
決定点過程とその混合物は, 高速収束速度が得られることを示す。
我々の結果は、超収束現象(Superconvergence)として知られる、より滑らかさが仮定されるにつれて、どのように速度が変化するかにも光を当てています。
さらに、決定的サンプリングは、文献の標準であるChristoffel関数からのサンプリングを一般化する。
さらに重要なことに、決定的サンプリングは、いわゆるインスタンス最適性を保証する。
関連論文リスト
- Harmonic Path Integral Diffusion [0.4527270266697462]
連続多変量確率分布からサンプリングする新しい手法を提案する。
本手法は状態空間の起点を中心とするデルタ関数から時間依存ブリッジを構築する。
論文 参考訳(メタデータ) (2024-09-23T16:20:21Z) - In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies [7.70133333709347]
高次元凸体を一様にサンプリングするための新しいランダムウォークを提案する。
出力をより強力な保証で、最先端のランタイムの複雑さを実現する。
論文 参考訳(メタデータ) (2024-05-02T16:15:46Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY
Estimation [4.014524824655106]
MESSY推定は最大エントロピーに基づくグラディエントおよびシンボリックデンシット推定法である。
本研究では,未知分布関数のサンプルを推定記号表現に接続する勾配に基づくドリフト拡散過程を構築する。
基本関数の記号探索を追加することで, 推定精度を合理的な計算コストで向上することがわかった。
論文 参考訳(メタデータ) (2023-06-07T03:28:47Z) - Coefficient-based Regularized Distribution Regression [4.21768682940933]
我々は、確率測度から実数値応答への回帰を目的とした係数に基づく正規化分布回帰を、Hilbert空間(RKHS)上で考える。
回帰関数の正則範囲が異なるアルゴリズムの漸近挙動を包括的に研究した。
最適速度は、いくつかの穏やかな条件下で得られるが、これは1段のサンプル化された最小値の最適速度と一致する。
論文 参考訳(メタデータ) (2022-08-26T03:46:14Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
本研究では,空間統計学から広く用いられている点過程の適応センシングについて検討する。
我々は、この強度関数を、特別に構築された正の基底で表される、歪んだガウス過程のサンプルとしてモデル化する。
我々の適応センシングアルゴリズムはランゲヴィン力学を用いており、後続サンプリング(textscCox-Thompson)と後続サンプリング(textscTop2)の原理に基づいている。
論文 参考訳(メタデータ) (2021-10-21T14:47:06Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
カーネル平均埋め込みは、その無限次元平均埋め込みによる確率測度を表す。
カーネルが特徴的である場合、カーネルの総和密度を持つ分布は密度が高いことを示す。
有限サンプル設定でそのような分布を最適化するアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-06-18T08:33:45Z) - Exact Recovery in the General Hypergraph Stochastic Block Model [92.28929858529679]
本稿では,d-uniform hypergraph block model(d-HSBM)の正確な回復の基本的な限界について検討する。
精度の高いしきい値が存在し、正確な回復がしきい値の上に達成でき、その下には不可能であることを示す。
論文 参考訳(メタデータ) (2021-05-11T03:39:08Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。