論文の概要: Algorithm-Oriented Qubit Mapping for Variational Quantum Algorithms
- arxiv url: http://arxiv.org/abs/2310.09826v3
- Date: Mon, 29 Jul 2024 15:25:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 00:36:23.518279
- Title: Algorithm-Oriented Qubit Mapping for Variational Quantum Algorithms
- Title(参考訳): 変分量子アルゴリズムのためのアルゴリズム指向クビットマッピング
- Authors: Yanjun Ji, Xi Chen, Ilia Polian, Yue Ban,
- Abstract要約: 短期デバイスに実装された量子アルゴリズムは、ノイズと限定的な量子ビット接続による量子ビットマッピングを必要とする。
本稿では,アルゴリズム指向キュービットマッピング(AOQMAP)と呼ばれる手法を提案する。
- 参考スコア(独自算出の注目度): 3.990724104767043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum algorithms implemented on near-term devices require qubit mapping due to noise and limited qubit connectivity. In this paper we propose a strategy called algorithm-oriented qubit mapping (AOQMAP) that aims to bridge the gap between exact and scalable mapping methods by utilizing the inherent structure of algorithms. While exact methods provide optimal solutions, they become intractable for large circuits. Scalable methods, like SWAP networks, offer fast solutions but lack optimality. AOQMAP bridges this gap by leveraging algorithmic features and their association with specific device substructures to achieve optimal and scalable solutions. The proposed strategy follows a two stage approach. First, it maps circuits to subtopologies to meet connectivity constraints. Second, it identifies the optimal qubits for execution using a cost function. Notably, AOQMAP provides both scalable and optimal solutions for variational quantum algorithms with fully connected two qubit interactions on common subtopologies including linear, T-, and H-shaped, minimizing circuit depth. Benchmarking experiments conducted on IBM quantum devices demonstrate significant reductions in gate count and circuit depth compared to Qiskit, Tket, and SWAP network. Specifically, AOQMAP achieves up to an 82% reduction in circuit depth and an average 138% increase in success probability. This scalable and algorithm-specific approach holds the potential to optimize a wider range of quantum algorithms.
- Abstract(参考訳): 短期デバイスに実装された量子アルゴリズムは、ノイズと限定的な量子ビット接続による量子ビットマッピングを必要とする。
本稿では,アルゴリズム固有の構造を利用して,正確なマッピング手法とスケーラブルなマッピング手法のギャップを埋めることを目的とした,アルゴリズム指向キュービットマッピング(AOQMAP)という戦略を提案する。
正確な手法は最適解を提供するが、大きな回路では難解となる。
SWAPネットワークのようなスケーラブルなメソッドは高速なソリューションを提供するが、最適性はない。
AOQMAPはこのギャップを、アルゴリズム的特徴と、特定のデバイスサブ構造との関係を利用して、最適でスケーラブルなソリューションを実現することで埋める。
提案された戦略は2段階のアプローチに従う。
まず、接続制約を満たすために回路をサブトポロジーにマップする。
第二に、コスト関数を用いて実行するための最適なキュービットを特定する。
特に、AOQMAPは、線形、T字型、H字型の回路深度を最小化する共通のサブトポロジー上で、完全に接続された2つの量子ビット相互作用を持つ変分量子アルゴリズムのスケーラブルかつ最適解を提供する。
IBM量子デバイス上で行われたベンチマーク実験では、Qiskit、Tket、SWAPネットワークと比較してゲート数と回路深さが大幅に減少した。
具体的には、AOQMAPは回路深さを最大82%減少させ、平均138%の成功確率を上昇させる。
このスケーラブルでアルゴリズム固有のアプローチは、より広い範囲の量子アルゴリズムを最適化する可能性を秘めている。
関連論文リスト
- A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
この研究は、量子回路のコンパイルマッピング問題における臨界サブルーチンとして、マルチキュービットパスフィンディングに焦点を当てている。
本稿では,回路SWAPゲート深さに対して量子ハードウェア上で量子ビットを最適にナビゲートする二進整数線形計画法を用いてモデル化したアルゴリズムを提案する。
我々は、様々な量子ハードウェアレイアウトのアルゴリズムをベンチマークし、計算ランタイム、解SWAP深さ、累積SWAPゲート誤差率などの特性を評価した。
論文 参考訳(メタデータ) (2024-05-29T05:59:15Z) - Single-Qubit Gates Matter for Optimising Quantum Circuit Depth in Qubit
Mapping [4.680722019621822]
本稿では,単一ビットゲートが回路深さに与える影響を考慮し,簡便かつ効率的な手法を提案する。
本手法は,回路深度を最適化する既存のQCTアルゴリズムと組み合わせることができる。
SABREに埋め込み,回路深度を50%, 平均27%まで低減できることを示す。
論文 参考訳(メタデータ) (2023-08-01T23:16:16Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Robust Qubit Mapping Algorithm via Double-Source Optimal Routing on Large Quantum Circuits [11.391158217994782]
Duostraは、実際のハードウェアデバイスで大規模量子回路を実装するという課題に対処するために設計されている。
ダブルキュービットゲートの最適経路を効率よく決定し、SWAPゲートを挿入することで動作する。
合理的なランタイム内で、良質な結果が得られます。
論文 参考訳(メタデータ) (2022-10-04T01:47:11Z) - Wide Quantum Circuit Optimization with Topology Aware Synthesis [0.8469686352132708]
ユニタリ合成は、量子回路を制限的量子ビット位相にマッピングしながら最適なマルチキュービットゲート数を達成する最適化手法である。
我々は,emphBQSKitフレームワークで構築されたトポロジ対応合成ツールであるTopASを紹介した。
論文 参考訳(メタデータ) (2022-06-27T21:59:30Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - 2D Qubit Placement of Quantum Circuits using LONGPATH [1.6631602844999722]
任意の量子回路におけるSWAPゲートの数を最適化する2つのアルゴリズムが提案されている。
提案手法は1Dおよび2D NTCアーキテクチャにおけるSWAPゲート数を大幅に削減する。
論文 参考訳(メタデータ) (2020-07-14T04:09:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。