論文の概要: Machine learning in physics: a short guide
- arxiv url: http://arxiv.org/abs/2310.10368v1
- Date: Mon, 16 Oct 2023 13:05:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 01:37:22.448085
- Title: Machine learning in physics: a short guide
- Title(参考訳): 物理における機械学習 : 簡単なガイド
- Authors: Francisco A. Rodrigues
- Abstract要約: 機械学習は急速に成長する分野であり、物理学を含む科学の多くの分野に革命をもたらす可能性がある。
このレビューでは、物理における機械学習の簡単な概要を説明し、教師なし、教師なし、強化学習の主な概念を取り上げている。
本稿では、物理学における機械学習の主な応用について紹介し、関連する課題と展望について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning is a rapidly growing field with the potential to
revolutionize many areas of science, including physics. This review provides a
brief overview of machine learning in physics, covering the main concepts of
supervised, unsupervised, and reinforcement learning, as well as more
specialized topics such as causal inference, symbolic regression, and deep
learning. We present some of the principal applications of machine learning in
physics and discuss the associated challenges and perspectives.
- Abstract(参考訳): 機械学習は急速に成長する分野であり、物理学を含む科学分野に革命をもたらす可能性がある。
このレビューでは、物理における機械学習の簡単な概要を説明し、教師付き、教師なし、強化学習の主観、そして因果推論、記号回帰、ディープラーニングといったより特殊なトピックを取り上げている。
物理学における機械学習の主な応用をいくつか紹介し、関連する課題と展望について議論する。
関連論文リスト
- Understanding Machine Learning Paradigms through the Lens of Statistical Thermodynamics: A tutorial [0.0]
このチュートリアルは、エントロピー、自由エネルギー、そして機械学習に使用される変分推論のような高度なテクニックを掘り下げる。
物理的システムの振る舞いを深く理解することで、より効果的で信頼性の高い機械学習モデルが得られることを示す。
論文 参考訳(メタデータ) (2024-11-24T18:20:05Z) - Learning Robotic Navigation from Experience: Principles, Methods, and
Recent Results [94.60414567852536]
現実世界のナビゲーションは、単純な幾何学的抽象化に反する複雑な物理的課題の集合を示す。
機械学習は、幾何学や従来の計画を超えた、有望な方法を提供する。
本稿では,ロボットナビゲーションスキルを実験的に学習するツールキットについて紹介する。
論文 参考訳(メタデータ) (2022-12-13T17:41:58Z) - Physics-Informed Machine Learning: A Survey on Problems, Methods and
Applications [31.157298426186653]
最近の研究は、物理的な事前および収集されたデータを組み込むことによって、機械学習モデルに潜在的な利点を提供することを示している。
本稿では、経験的データと利用可能な物理的事前知識を活用するモデルを構築することを目的とした、Physical-Informed Machine Learning(PIML)という学習パラダイムを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:34:30Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
本稿では,マルチモーダル機械学習の計算的基礎と理論的基礎について概説する。
本稿では,表現,アライメント,推論,生成,伝達,定量化という,6つの技術課題の分類法を提案する。
最近の技術的成果は、この分類のレンズを通して示され、研究者は新しいアプローチの類似点と相違点を理解することができる。
論文 参考訳(メタデータ) (2022-09-07T19:21:19Z) - Deep Learning to See: Towards New Foundations of Computer Vision [88.69805848302266]
この本はコンピュータビジョンの分野における科学的進歩を批判している。
情報に基づく自然法則の枠組みにおける視覚の研究を提案する。
論文 参考訳(メタデータ) (2022-06-30T15:20:36Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
本稿では、教師なし、教師なし、強化学習アルゴリズムにおけるディープラーニングとカーネル手法の使用について述べる。
我々は、微分可能プログラミング、生成モデル、機械学習に対する統計的アプローチ、量子機械学習など、より専門的なトピックについて議論する。
論文 参考訳(メタデータ) (2022-04-08T17:48:59Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
機械学習の分野では、対称性に対する認識が目覚ましいパフォーマンスのブレークスルーを引き起こしている。
物理学のコミュニティと、より広い機械学習のコミュニティの両方に、理解すべきことがたくさんある、と私たちは主張する。
論文 参考訳(メタデータ) (2022-03-11T18:27:04Z) - Machine Learning in the Search for New Fundamental Physics [0.32622301272834514]
機械学習は、新しい基礎物理学の探索を強化し、加速する上で重要な役割を担っている。
地上高エネルギー物理実験における機械学習の現状と新しい物理探索への応用について概説する。
論文 参考訳(メタデータ) (2021-12-07T15:26:42Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
モーターシステムの理解における機械学習の有用性は、データの収集、測定、分析の方法に革命をもたらすことを約束している。
本稿では, ポーズ推定, 運動解析, 次元減少, 閉ループフィードバックから, ニューラル相関の理解, 機能停止まで, 機械学習の利用の増大について論じる。
論文 参考訳(メタデータ) (2021-03-22T12:42:16Z) - Living in the Physics and Machine Learning Interplay for Earth
Observation [7.669855697331746]
推論は変数の関係を理解し、物理的に解釈可能なモデルを導出することを意味する。
機械学習モデルだけでも優れた近似器であるが、物理学の最も基本的な法則を尊重しないことが多い。
これは、地球系の知識を発見できるアルゴリズムを開発し、適用するための、長期的なAIの集合的なアジェンダである。
論文 参考訳(メタデータ) (2020-10-18T16:58:20Z) - Integrating Machine Learning with Physics-Based Modeling [17.392391163553334]
この記事では、幅広い関心事の1つに焦点を当てる。 機械学習と物理に基づくモデリングをどのように統合できるのか?
機械学習に基づく物理モデルを開発する上で最も重要な2つの課題について論じる。
最終的には、この統合がどこに導くのか、そして機械学習が科学的モデリングにうまく統合された後、新たなフロンティアがどこにあるのか、という一般的な議論で終わります。
論文 参考訳(メタデータ) (2020-06-04T02:35:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。