論文の概要: Equivariant Matrix Function Neural Networks
- arxiv url: http://arxiv.org/abs/2310.10434v1
- Date: Mon, 16 Oct 2023 14:17:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 13:57:14.407997
- Title: Equivariant Matrix Function Neural Networks
- Title(参考訳): 等価行列関数ニューラルネットワーク
- Authors: Ilyes Batatia, Lars L. Schaaf, Huajie Chen, G\'abor Cs\'anyi,
Christoph Ortner, Felix A. Faber
- Abstract要約: 解析行列同変関数を通じて非局所的相互作用をパラメータ化する新しいアーキテクチャであるマトリックス関数ニューラルネットワーク(MFNs)を導入する。
MFNは量子系の複雑な非局所的な相互作用を捉えることができ、新しい最先端の力場への道を歩むことができる。
- 参考スコア(独自算出の注目度): 1.8717045355288808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs), especially message-passing neural networks
(MPNNs), have emerged as powerful architectures for learning on graphs in
diverse applications. However, MPNNs face challenges when modeling non-local
interactions in systems such as large conjugated molecules, metals, or
amorphous materials. Although Spectral GNNs and traditional neural networks
such as recurrent neural networks and transformers mitigate these challenges,
they often lack extensivity, adaptability, generalizability, computational
efficiency, or fail to capture detailed structural relationships or symmetries
in the data. To address these concerns, we introduce Matrix Function Neural
Networks (MFNs), a novel architecture that parameterizes non-local interactions
through analytic matrix equivariant functions. Employing resolvent expansions
offers a straightforward implementation and the potential for linear scaling
with system size. The MFN architecture achieves state-of-the-art performance in
standard graph benchmarks, such as the ZINC and TU datasets, and is able to
capture intricate non-local interactions in quantum systems, paving the way to
new state-of-the-art force fields.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)、特にメッセージパスニューラルネットワーク(MPNN)は、さまざまなアプリケーションでグラフを学ぶための強力なアーキテクチャとして登場した。
しかし、mpnnは、大きな共役分子、金属、アモルファス物質などのシステムにおける非局所相互作用のモデル化において困難に直面している。
スペクトルGNNやリカレントニューラルネットワークやトランスフォーマーといった従来のニューラルネットワークはこれらの課題を緩和するが、拡張性、適応性、一般化性、計算効率、データ内の詳細な構造的関係や対称性の取得に失敗する。
これらの問題に対処するために,解析行列同変関数を介して非局所的相互作用をパラメータ化する新しいアーキテクチャであるマトリックス関数ニューラルネットワーク(MFN)を導入する。
resolvent expansionsの採用は、簡単な実装とシステムサイズでの線形スケーリングの可能性を提供する。
MFNアーキテクチャは、ZINCやTUデータセットなどの標準グラフベンチマークで最先端のパフォーマンスを実現し、量子システムにおける複雑な非局所的な相互作用をキャプチャし、新しい最先端の力場への道を歩むことができる。
関連論文リスト
- Deep Neural Networks via Complex Network Theory: a Perspective [3.1023851130450684]
ディープニューラルネットワーク(DNN)は、リンクと頂点が反復的にデータを処理し、タスクを亜最適に解くグラフとして表現することができる。複雑なネットワーク理論(CNT)は、統計物理学とグラフ理論を融合させ、その重みとニューロン構造を分析してニューラルネットワークを解釈する方法を提供する。
本研究では,DNNのトレーニング分布から抽出した測定値を用いて既存のCNTメトリクスを拡張し,純粋なトポロジカル解析からディープラーニングの解釈可能性へ移行する。
論文 参考訳(メタデータ) (2024-04-17T08:42:42Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Graph Metanetworks for Processing Diverse Neural Architectures [33.686728709734105]
Graph Metanetworks(GMN)は、競合するメソッドが苦労するニューラルネットワークに一般化する。
GMNは,入力ニューラルネットワーク関数を残したパラメータ置換対称性と等価であることを示す。
論文 参考訳(メタデータ) (2023-12-07T18:21:52Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Random Graph-Based Neuromorphic Learning with a Layer-Weaken Structure [4.477401614534202]
我々は,ランダムグラフ理論を実践的な意味でNNモデルに変換し,各ニューロンの入出力関係を明らかにする。
この低演算コストアプローチでは、ニューロンはいくつかのグループに割り当てられ、接続関係はそれらに属するランダムグラフの一様表現とみなすことができる。
本稿では,複数のRGNN間の情報インタラクションを含む共同分類機構を開発し,教師付き学習における3つのベンチマークタスクの大幅な性能向上を実現する。
論文 参考訳(メタデータ) (2021-11-17T03:37:06Z) - Recurrent Graph Tensor Networks: A Low-Complexity Framework for
Modelling High-Dimensional Multi-Way Sequence [24.594587557319837]
我々は、リカレントニューラルネットワーク(RNN)における隠れ状態のモデリングを近似するグラフフィルタフレームワークを開発する。
提案するフレームワークは、複数のマルチウェイシーケンスモデリングタスクを通じて検証され、従来のRNNに対してベンチマークされる。
提案したRGTNは,標準RNNよりも優れるだけでなく,従来のRNNと関連する次元の曲線を緩和できることを示す。
論文 参考訳(メタデータ) (2020-09-18T10:13:36Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。