論文の概要: Hybrid variable spiking graph neural networks for energy-efficient scientific machine learning
- arxiv url: http://arxiv.org/abs/2412.09379v1
- Date: Thu, 12 Dec 2024 15:47:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:31:39.581363
- Title: Hybrid variable spiking graph neural networks for energy-efficient scientific machine learning
- Title(参考訳): エネルギー効率の高い科学機械学習のためのハイブリッド可変スパイキンググラフニューラルネットワーク
- Authors: Isha Jain, Shailesh Garg, Shaurya Shriyam, Souvik Chakraborty,
- Abstract要約: 本稿では,そのアーキテクチャ内で可変スパイキングニューロン(VSN)を用いて疎通信を促進するハイブリッド可変スパイキンググラフニューラルネットワーク(HVS-GNN)を提案する。
VSNは、スパースなイベント駆動型計算を推進しながらも、しばしば計算力学アプリケーションで遭遇する回帰タスクでもうまく機能する。
その結果,HVS-GNNは疎通信の促進とエネルギー効率の向上を図った。
- 参考スコア(独自算出の注目度): 2.099922236065961
- License:
- Abstract: Graph-based representations for samples of computational mechanics-related datasets can prove instrumental when dealing with problems like irregular domains or molecular structures of materials, etc. To effectively analyze and process such datasets, deep learning offers Graph Neural Networks (GNNs) that utilize techniques like message-passing within their architecture. The issue, however, is that as the individual graph scales and/ or GNN architecture becomes increasingly complex, the increased energy budget of the overall deep learning model makes it unsustainable and restricts its applications in applications like edge computing. To overcome this, we propose in this paper Hybrid Variable Spiking Graph Neural Networks (HVS-GNNs) that utilize Variable Spiking Neurons (VSNs) within their architecture to promote sparse communication and hence reduce the overall energy budget. VSNs, while promoting sparse event-driven computations, also perform well for regression tasks, which are often encountered in computational mechanics applications and are the main target of this paper. Three examples dealing with prediction of mechanical properties of material based on microscale/ mesoscale structures are shown to test the performance of the proposed HVS-GNNs in regression tasks. We have also compared the performance of HVS-GNN architectures with the performance of vanilla GNNs and GNNs utilizing leaky integrate and fire neurons. The results produced show that HVS-GNNs perform well for regression tasks, all while promoting sparse communication and, hence, energy efficiency.
- Abstract(参考訳): 計算力学関連データセットのサンプルに対するグラフベースの表現は、不規則なドメインや物質の分子構造といった問題に対処する際の道具となる。
このようなデータセットを効果的に分析し、処理するために、ディープラーニングは、アーキテクチャ内でメッセージパッシングのようなテクニックを利用するグラフニューラルネットワーク(GNN)を提供する。
しかし、個々のグラフスケールやGNNアーキテクチャが複雑化するにつれて、全体的なディープラーニングモデルのエネルギー予算が増加し、持続不可能となり、エッジコンピューティングのようなアプリケーションでの応用が制限される。
これを解決するために,本論文では,そのアーキテクチャ内での可変スパイキングニューロン(VSN)を用いたハイブリッド可変スパイキンググラフニューラルネットワーク(HVS-GNN)を提案する。
VSNは、スパースイベント駆動型計算を推進しながらも、しばしば計算力学の応用で遭遇する回帰タスクでもうまく機能し、本論文の主目的である。
マイクロスケール/メソスケール構造に基づく材料の力学特性の予測を行う3つの例を示し, 回帰作業における提案したHVS-GNNの性能を検証した。
また,HVS-GNNアーキテクチャの性能とバニラGNNとGNNの性能を比較した。
その結果,HVS-GNNは疎通信の促進とエネルギー効率の向上を図った。
関連論文リスト
- DenseGNN: universal and scalable deeper graph neural networks for high-performance property prediction in crystals and molecules [4.648990939177395]
本稿では,Dense Connectivity Network (DCN), Hierarchical Node-Edge-Graph Residual Networks (HRN), Local Structure Orders Embedding (LOPE)を活用するDenseGNNを紹介する。
DenseGNNは、JARVIS-DFT、Material Project、QM9などのデータセット上での最先端のパフォーマンスを実現し、GIN、Schnet、Hamnetといったモデルのパフォーマンスを改善している。
論文 参考訳(メタデータ) (2025-01-05T13:41:28Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - Enabling Accelerators for Graph Computing [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学ぶための新しいパラダイムを提供する。
GNNは従来のニューラルネットワークと比較して新しい計算課題を提示している。
この論文は、GNNが基盤となるハードウェアとどのように相互作用するかをよりよく理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-16T23:31:20Z) - Connectivity Optimized Nested Graph Networks for Crystal Structures [1.1470070927586016]
グラフニューラルネットワーク(GNN)は、材料科学や化学における様々な応用に応用されている。
提案したモデルでは,MateBenchベンチマークのすべてのタスクにおいて,最新の結果が体系的に改善されることが示されている。
論文 参考訳(メタデータ) (2023-02-27T19:26:48Z) - Spiking Variational Graph Auto-Encoders for Efficient Graph
Representation Learning [10.65760757021534]
本稿では,効率的なグラフ表現学習のためのSNNに基づく深層生成手法,すなわちSpking Variational Graph Auto-Encoders (S-VGAE)を提案する。
我々は,複数のベンチマークグラフデータセット上でリンク予測実験を行い,この結果から,グラフ表現学習における他のANNやSNNに匹敵する性能で,より少ないエネルギーを消費することを示した。
論文 参考訳(メタデータ) (2022-10-24T12:54:41Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
ノードやエッジの分類やリンクの予測といったタスクで大きな成功を収めたグラフニューラルネットワーク(GNN)に注目した。
グラフ技術の進歩には,大規模ネットワーク処理のための新たなアプローチが必要である。
私たちは、ディープラーニングコミュニティで成功したと知られている既存のツールとフレームワークを使用して、GNNを並列化する方法を研究します。
論文 参考訳(メタデータ) (2020-12-20T04:20:38Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。