論文の概要: Is there a Trojan! : Literature survey and critical evaluation of the
latest ML based modern intrusion detection systems in IoT environments
- arxiv url: http://arxiv.org/abs/2310.10778v1
- Date: Wed, 14 Jun 2023 08:48:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 02:21:32.166672
- Title: Is there a Trojan! : Literature survey and critical evaluation of the
latest ML based modern intrusion detection systems in IoT environments
- Title(参考訳): トロイの木馬がいるのか!
IoT環境における最新のMLによる最新の侵入検知システムの文献調査と評価
- Authors: Vishal Karanam
- Abstract要約: ドメインとしてのIoTはここ数年で大きく成長し、データ量だけでなく、サイバーセキュリティの脅威もモバイルネットワーク環境に匹敵している。
IoT環境内のデータの機密性とプライバシは、ここ数年でセキュリティ研究の重要な領域になっている。
ますます多くのセキュリティ専門家が、従来のセキュリティ手法を補完するものとして、IoT環境を保護する堅牢なIDSシステムを設計することに関心を持っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: IoT as a domain has grown so much in the last few years that it rivals that
of the mobile network environments in terms of data volumes as well as
cybersecurity threats. The confidentiality and privacy of data within IoT
environments have become very important areas of security research within the
last few years. More and more security experts are interested in designing
robust IDS systems to protect IoT environments as a supplement to the more
traditional security methods. Given that IoT devices are resource-constrained
and have a heterogeneous protocol stack, most traditional intrusion detection
approaches don't work well within these schematic boundaries. This has led
security researchers to innovate at the intersection of Machine Learning and
IDS to solve the shortcomings of non-learning based IDS systems in the IoT
ecosystem.
Despite various ML algorithms already having high accuracy with IoT datasets,
we can see a lack of sufficient production grade models. This survey paper
details a comprehensive summary of the latest learning-based approaches used in
IoT intrusion detection systems, and conducts a thorough critical review of
these systems, potential pitfalls in ML pipelines, challenges from an ML
perspective, and discusses future research scope and recommendations.
- Abstract(参考訳): ドメインとしてのIoTはここ数年で大きく成長し、データ量だけでなく、サイバーセキュリティの脅威もモバイルネットワーク環境に匹敵している。
IoT環境内のデータの機密性とプライバシは、ここ数年でセキュリティ研究の重要な領域になっている。
ますます多くのセキュリティ専門家が、従来のセキュリティ手法を補完するものとして、IoT環境を保護する堅牢なIDSシステムを設計することに関心を持っている。
IoTデバイスはリソース制約があり、異種プロトコルスタックがあるため、従来の侵入検出アプローチはこれらのスキーマ境界内ではうまく機能しない。
これにより、セキュリティ研究者は、IoTエコシステムにおける非学習ベースのIDSシステムの欠点を解決するために、マシンラーニングとIDSの交差点でイノベーションを行うことができた。
さまざまなMLアルゴリズムがIoTデータセットですでに高い精度を実現していますが、十分なプロダクショングレードモデルがないことが分かります。
本稿では,iot侵入検出システムにおける最新の学習ベースアプローチの概要を概説するとともに,これらのシステム,mlパイプラインの潜在的な落とし穴,mlの観点からの課題について徹底的なレビューを行い,今後の研究範囲と推奨事項について論じる。
関連論文リスト
- Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
日々の生活にIoT(Internet of Things)アプリケーションを統合することで、データトラフィックが急増し、重大なセキュリティ上の問題が発生しています。
本稿では、コストと精度のバランスの取れたトレードオフを見つけるための新しい手法を導入することにより、エッジレベルでのMLベースのIDSの有効性を向上させることに焦点を当てる。
論文 参考訳(メタデータ) (2024-04-29T21:26:18Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Unraveling Attacks in Machine Learning-based IoT Ecosystems: A Survey
and the Open Libraries Behind Them [9.55194238764852]
IoT(Internet of Things)は前例のない接続性の時代を迎え、2025年末までには800億のスマートデバイスが稼働すると予想されている。
機械学習(ML)は、IoT生成データの解析だけでなく、IoTエコシステム内のさまざまなアプリケーションにも重要な技術として機能する。
本稿では,MLのIoTへの統合によるセキュリティ上の脅威を包括的に調査する。
論文 参考訳(メタデータ) (2024-01-22T06:52:35Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
本稿では、異なる分野におけるIoTに関する法医学的およびセキュリティ上の問題についてレビューする。
ほとんどのIoTデバイスは、標準的なセキュリティ対策が欠如しているため、攻撃に対して脆弱である。
消費者のセキュリティを意識したニーズを満たすために、IoTはスマートホームシステムの開発に使用できる。
論文 参考訳(メタデータ) (2023-09-06T04:41:48Z) - Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions [0.0]
IoT(Internet of Things)の統合は、多数のインテリジェントデバイスを人間による最小限の干渉で接続する。
現在のセキュリティアプローチも改善され、IoT環境を効果的に保護できる。
ディープラーニング(DL)/機械学習(ML)メソッドは、IoTシステムからセキュリティ上のインテリジェンスシステムへの安全な接触を可能にするため、IoTシステムを保護するために不可欠である。
論文 参考訳(メタデータ) (2022-10-24T19:02:27Z) - Dependable Intrusion Detection System for IoT: A Deep Transfer
Learning-based Approach [0.0]
本論文は,いくつかの既存手法より優れた深層移動学習型信頼型IDSモデルを提案する。
これは、少量のラベル付きデータに対して、通常のシナリオとアタックシナリオを特定するのに最も適している、効果的な属性選択を含んでいる。
また、信頼性の高い深層移動学習ベースのResNetモデルや、実世界のデータを考慮した評価も含んでいる。
論文 参考訳(メタデータ) (2022-04-11T02:46:22Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
クラウドコンピューティングは、複雑で高性能でスケーラブルな計算のために、強力で必要不可欠な技術になっている。
データ生成の迅速化とボリュームは、データ管理とセキュリティに重大な課題をもたらし始めている。
ビッグデータ設定における侵入検知システム(IDS)の設計と展開が重要視されている。
論文 参考訳(メタデータ) (2020-05-23T20:57:12Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。