論文の概要: Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future
- arxiv url: http://arxiv.org/abs/2309.02707v1
- Date: Wed, 6 Sep 2023 04:41:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 23:09:29.257894
- Title: Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future
- Title(参考訳): IoTの展望をナビゲートする - 法医学、セキュリティ問題、アプリケーション、研究課題、未来を解明する
- Authors: Shams Forruque Ahmed, Shanjana Shuravi, Afsana Bhuyian, Shaila Afrin, Aanushka Mehjabin, Sweety Angela Kuldeep, Md. Sakib Bin Alam, Amir H. Gandomi,
- Abstract要約: 本稿では、異なる分野におけるIoTに関する法医学的およびセキュリティ上の問題についてレビューする。
ほとんどのIoTデバイスは、標準的なセキュリティ対策が欠如しているため、攻撃に対して脆弱である。
消費者のセキュリティを意識したニーズを満たすために、IoTはスマートホームシステムの開発に使用できる。
- 参考スコア(独自算出の注目度): 6.422895251217666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the exponential expansion of the internet, the possibilities of security attacks and cybercrimes have increased accordingly. However, poorly implemented security mechanisms in the Internet of Things (IoT) devices make them susceptible to cyberattacks, which can directly affect users. IoT forensics is thus needed for investigating and mitigating such attacks. While many works have examined IoT applications and challenges, only a few have focused on both the forensic and security issues in IoT. Therefore, this paper reviews forensic and security issues associated with IoT in different fields. Future prospects and challenges in IoT research and development are also highlighted. As demonstrated in the literature, most IoT devices are vulnerable to attacks due to a lack of standardized security measures. Unauthorized users could get access, compromise data, and even benefit from control of critical infrastructure. To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system by designing a FLIP-based system that is highly scalable and adaptable. Utilizing a blockchain-based authentication mechanism with a multi-chain structure can provide additional security protection between different trust domains. Deep learning can be utilized to develop a network forensics framework with a high-performing system for detecting and tracking cyberattack incidents. Moreover, researchers should consider limiting the amount of data created and delivered when using big data to develop IoT-based smart systems. The findings of this review will stimulate academics to seek potential solutions for the identified issues, thereby advancing the IoT field.
- Abstract(参考訳): インターネットの急速な拡大を考えると、セキュリティ攻撃やサイバー犯罪の可能性が高まっている。
しかし、IoT(Internet of Things)デバイスに実装されていないセキュリティメカニズムは、サイバー攻撃の影響を受けやすく、ユーザに直接影響する可能性がある。
したがって、そのような攻撃の調査と緩和にはIoTの法医学が必要である。
多くの研究がIoTアプリケーションと課題を調査しているが、IoTの法医学的問題とセキュリティ上の問題の両方に重点を置いているのはごくわずかである。
そこで,本論文では,異なる分野におけるIoTに関する法医学的およびセキュリティ上の問題についてレビューする。
IoT研究と開発における今後の展望と課題も強調されている。
文献で示されているように、ほとんどのIoTデバイスは、標準化されたセキュリティ対策が欠如しているため、攻撃に対して脆弱である。
無許可のユーザは、アクセスやデータ漏洩、さらには重要なインフラストラクチャのコントロールの恩恵を受けることができる。
消費者のセキュリティを意識したニーズを満たすために、IoTは、高度にスケーラブルで適応可能なFLIPベースのシステムを設計することによって、スマートホームシステムの開発に使用することができる。
ブロックチェーンベースの認証メカニズムをマルチチェーン構造に利用することで、さまざまな信頼ドメイン間でのセキュリティ保護が強化される。
ディープラーニングは、サイバー攻撃事件を検出し、追跡するための高性能なシステムを備えたネットワーク法医学フレームワークの開発に利用することができる。
さらに、研究者は、ビッグデータを使用してIoTベースのスマートシステムを開発する際に、作成および配信されるデータ量を制限することを検討する必要がある。
このレビューの結果は、研究者が特定された問題に対する潜在的な解決策を求めることを刺激し、IoT分野を前進させる。
関連論文リスト
- Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
IoT(Internet of Things)に対する攻撃は、デバイス、アプリケーション、インタラクションのネットワーク化と統合化が進むにつれて増加している。
IoTデバイスを効率的にセキュアにするためには、侵入システムのリアルタイム検出が重要である。
本稿では、IoTセキュリティのための機械学習ベースの侵入検知戦略に関する最新の研究について検討する。
論文 参考訳(メタデータ) (2024-10-01T19:24:34Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions [0.0]
IoT(Internet of Things)の統合は、多数のインテリジェントデバイスを人間による最小限の干渉で接続する。
現在のセキュリティアプローチも改善され、IoT環境を効果的に保護できる。
ディープラーニング(DL)/機械学習(ML)メソッドは、IoTシステムからセキュリティ上のインテリジェンスシステムへの安全な接触を可能にするため、IoTシステムを保護するために不可欠である。
論文 参考訳(メタデータ) (2022-10-24T19:02:27Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
セキュアでプライバシ保護されたコラボレーティブなIoT侵入検出を実現するために,階層的なブロックチェーンベースのフェデレーション学習フレームワークを提案する。
MLベースの侵入検出フレームワークの提案は、学習プロセスと組織データのプライバシを確保するために、階層的なフェデレーション付き学習アーキテクチャに従っている。
その結果は、データプライバシを保持しながら、広範囲の悪意あるアクティビティを検出できる、セキュアに設計されたMLベースの侵入検知システムである。
論文 参考訳(メタデータ) (2022-04-08T19:06:16Z) - Reinforcement Learning for IoT Security: A Comprehensive Survey [4.0059435854780965]
セキュリティは、多くの攻撃ベクトル、セキュリティ欠陥、脆弱性を持つIoTシステムにおいて、長期にわたる課題です。
本稿では,異なる種類のIoTシステムに対するサイバー攻撃に関する包括的調査を行う。
次に、さまざまなIoTシステムにおけるさまざまなタイプの攻撃に対抗する強化学習と深層強化学習ベースのセキュリティソリューションを提示します。
論文 参考訳(メタデータ) (2021-02-14T21:09:49Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Smart Home, security concerns of IoT [91.3755431537592]
IoT(モノのインターネット)は、国内環境において広く普及している。
人々は自宅をスマートホームにリニューアルしているが、インターネットに接続された多くのデバイスを常時オンの環境センサーで所有するというプライバシー上の懸念はいまだに不十分だ。
デフォルトパスワードと弱いパスワード、安価な材料とハードウェア、暗号化されていない通信は、IoTデバイスの主要な脅威と脆弱性として識別される。
論文 参考訳(メタデータ) (2020-07-06T10:36:11Z) - Machine Learning Based Solutions for Security of Internet of Things
(IoT): A Survey [8.108571247838206]
IoTプラットフォームは、到達不可能なスマートサービスで人間の生活を前進させることによって、私たちの日常生活のあらゆる側面をつかむ、グローバルな巨人へと発展してきた。
IoTを保護するために適用可能なセキュリティ対策は,すでに存在する。
伝統的なテクニックは、様々な攻撃タイプやその重大さと同様に、進歩ブームほど効率的ではない。
機械学習(ML)では、IoTの現在および将来の課題に対処する多くの研究ウィンドウがオープンされている。
論文 参考訳(メタデータ) (2020-04-11T03:08:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。