論文の概要: Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions
- arxiv url: http://arxiv.org/abs/2210.13547v1
- Date: Mon, 24 Oct 2022 19:02:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 16:09:38.967304
- Title: Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions
- Title(参考訳): IoTセキュリティとプライバシのためのマシンラーニングとディープラーニング - アプリケーション,課題,今後の方向性
- Authors: Subrato Bharati, Prajoy Podder
- Abstract要約: IoT(Internet of Things)の統合は、多数のインテリジェントデバイスを人間による最小限の干渉で接続する。
現在のセキュリティアプローチも改善され、IoT環境を効果的に保護できる。
ディープラーニング(DL)/機械学習(ML)メソッドは、IoTシステムからセキュリティ上のインテリジェンスシステムへの安全な接触を可能にするため、IoTシステムを保護するために不可欠である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of the Internet of Things (IoT) connects a number of
intelligent devices with a minimum of human interference that can interact with
one another. IoT is rapidly emerging in the areas of computer science. However,
new security problems were posed by the cross-cutting design of the
multidisciplinary elements and IoT systems involved in deploying such schemes.
Ineffective is the implementation of security protocols, i.e., authentication,
encryption, application security, and access network for IoT systems and their
essential weaknesses in security. Current security approaches can also be
improved to protect the IoT environment effectively. In recent years, deep
learning (DL)/ machine learning (ML) has progressed significantly in various
critical implementations. Therefore, DL/ML methods are essential to turn IoT
systems protection from simply enabling safe contact between IoT systems to
intelligence systems in security. This review aims to include an extensive
analysis of ML systems and state-of-the-art developments in DL methods to
improve enhanced IoT device protection methods. On the other hand, various new
insights in machine and deep learning for IoT Securities illustrate how it
could help future research. IoT protection risks relating to emerging or
essential threats are identified, as well as future IoT device attacks and
possible threats associated with each surface. We then carefully analyze DL and
ML IoT protection approaches and present each approach's benefits,
possibilities, and weaknesses. This review discusses a number of potential
challenges and limitations. The future works, recommendations, and suggestions
of DL/ML in IoT security are also included.
- Abstract(参考訳): IoT(Internet of Things)の統合は、複数のインテリジェントデバイスを人間による最小限の干渉で接続し、互いに対話する。
IoTはコンピュータ科学の分野で急速に普及しつつある。
しかし、このようなスキームの展開に関わる多分野の要素とIoTシステムの横断的な設計によって、新たなセキュリティ問題が引き起こされた。
非効率は、iotシステムのための認証、暗号化、アプリケーションセキュリティ、アクセスネットワークとそのセキュリティにおける本質的な弱点といったセキュリティプロトコルの実装である。
現在のセキュリティアプローチも改善され、IoT環境を効果的に保護できる。
近年、ディープラーニング(DL)/機械学習(ML)は様々な重要な実装で大きく進歩している。
したがって、DL/MLメソッドは、IoTシステムからセキュリティ上のインテリジェンスシステムへの安全な接触を可能にするため、IoTシステムを保護するために不可欠である。
このレビューは、拡張IoTデバイス保護方法を改善するために、MLシステムとDLメソッドの最先端開発を幅広く分析することを目的としている。
一方、IoT Securitiesの機械学習とディープラーニングに関するさまざまな新たな洞察は、今後の研究にどのように役立つかを示している。
新興または本質的な脅威に関連するIoT保護リスクと、将来のIoTデバイス攻撃と、各表面に関連する脅威を識別する。
次に、DLとML IoT保護アプローチを慎重に分析し、それぞれのアプローチのメリット、可能性、弱点を示します。
この記事では、潜在的な課題と制限について論じる。
IoTセキュリティにおけるDL/MLの将来的な作業、推奨、提案も含んでいる。
関連論文リスト
- Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
IoT(Internet of Things)に対する攻撃は、デバイス、アプリケーション、インタラクションのネットワーク化と統合化が進むにつれて増加している。
IoTデバイスを効率的にセキュアにするためには、侵入システムのリアルタイム検出が重要である。
本稿では、IoTセキュリティのための機械学習ベースの侵入検知戦略に関する最新の研究について検討する。
論文 参考訳(メタデータ) (2024-10-01T19:24:34Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
本稿では、異なる分野におけるIoTに関する法医学的およびセキュリティ上の問題についてレビューする。
ほとんどのIoTデバイスは、標準的なセキュリティ対策が欠如しているため、攻撃に対して脆弱である。
消費者のセキュリティを意識したニーズを満たすために、IoTはスマートホームシステムの開発に使用できる。
論文 参考訳(メタデータ) (2023-09-06T04:41:48Z) - Is there a Trojan! : Literature survey and critical evaluation of the
latest ML based modern intrusion detection systems in IoT environments [0.0]
ドメインとしてのIoTはここ数年で大きく成長し、データ量だけでなく、サイバーセキュリティの脅威もモバイルネットワーク環境に匹敵している。
IoT環境内のデータの機密性とプライバシは、ここ数年でセキュリティ研究の重要な領域になっている。
ますます多くのセキュリティ専門家が、従来のセキュリティ手法を補完するものとして、IoT環境を保護する堅牢なIDSシステムを設計することに関心を持っている。
論文 参考訳(メタデータ) (2023-06-14T08:48:46Z) - Reinforcement Learning for IoT Security: A Comprehensive Survey [4.0059435854780965]
セキュリティは、多くの攻撃ベクトル、セキュリティ欠陥、脆弱性を持つIoTシステムにおいて、長期にわたる課題です。
本稿では,異なる種類のIoTシステムに対するサイバー攻撃に関する包括的調査を行う。
次に、さまざまなIoTシステムにおけるさまざまなタイプの攻撃に対抗する強化学習と深層強化学習ベースのセキュリティソリューションを提示します。
論文 参考訳(メタデータ) (2021-02-14T21:09:49Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Smart Home, security concerns of IoT [91.3755431537592]
IoT(モノのインターネット)は、国内環境において広く普及している。
人々は自宅をスマートホームにリニューアルしているが、インターネットに接続された多くのデバイスを常時オンの環境センサーで所有するというプライバシー上の懸念はいまだに不十分だ。
デフォルトパスワードと弱いパスワード、安価な材料とハードウェア、暗号化されていない通信は、IoTデバイスの主要な脅威と脆弱性として識別される。
論文 参考訳(メタデータ) (2020-07-06T10:36:11Z) - Machine Learning Based Solutions for Security of Internet of Things
(IoT): A Survey [8.108571247838206]
IoTプラットフォームは、到達不可能なスマートサービスで人間の生活を前進させることによって、私たちの日常生活のあらゆる側面をつかむ、グローバルな巨人へと発展してきた。
IoTを保護するために適用可能なセキュリティ対策は,すでに存在する。
伝統的なテクニックは、様々な攻撃タイプやその重大さと同様に、進歩ブームほど効率的ではない。
機械学習(ML)では、IoTの現在および将来の課題に対処する多くの研究ウィンドウがオープンされている。
論文 参考訳(メタデータ) (2020-04-11T03:08:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。