論文の概要: Exact nonlinear state estimation
- arxiv url: http://arxiv.org/abs/2310.10976v1
- Date: Tue, 17 Oct 2023 03:44:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 17:44:00.024632
- Title: Exact nonlinear state estimation
- Title(参考訳): 厳密な非線形状態推定
- Authors: Hristo G. Chipilski
- Abstract要約: 地質学におけるデータ同化法の大部分はガウスの仮定に基づいている。
非パラメトリックな粒子ベースDAアルゴリズムは精度が優れているが、高次元モデルへの応用は依然として運用上の課題となっている。
本稿では,DA手法の既存のギャップを埋めようとする新しい非線形推定理論を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The majority of data assimilation (DA) methods in the geosciences are based
on Gaussian assumptions. While these assumptions facilitate efficient
algorithms, they cause analysis biases and subsequent forecast degradations.
Non-parametric, particle-based DA algorithms have superior accuracy, but their
application to high-dimensional models still poses operational challenges.
Drawing inspiration from recent advances in the field of generative artificial
intelligence (AI), this article introduces a new nonlinear estimation theory
which attempts to bridge the existing gap in DA methodology. Specifically, a
Conjugate Transform Filter (CTF) is derived and shown to generalize the
celebrated Kalman filter to arbitrarily non-Gaussian distributions. The new
filter has several desirable properties, such as its ability to preserve
statistical relationships in the prior state and convergence to highly accurate
observations. An ensemble approximation of the new theory (ECTF) is also
presented and validated using idealized statistical experiments that feature
bounded quantities with non-Gaussian distributions, a prevalent challenge in
Earth system models. Results from these experiments indicate that the greatest
benefits from ECTF occur when observation errors are small relative to the
forecast uncertainty and when state variables exhibit strong nonlinear
dependencies. Ultimately, the new filtering theory offers exciting avenues for
improving conventional DA algorithms through their principled integration with
AI techniques.
- Abstract(参考訳): 地質学におけるデータ同化(DA)法の大部分はガウスの仮定に基づいている。
これらの仮定は効率的なアルゴリズムを促進するが、分析バイアスとその後の予測劣化を引き起こす。
非パラメトリックな粒子ベースDAアルゴリズムは精度が優れているが、高次元モデルへの応用は依然として運用上の課題となっている。
本稿では, 生成人工知能(AI)分野の最近の進歩から着想を得て, DA手法の既存のギャップを埋めようとする新しい非線形推定理論を提案する。
具体的には、共役変換フィルタ(ctf)を導出し、有名なカルマンフィルタを任意に非ガウス分布に一般化する。
新しいフィルタは、先行状態における統計的関係の保存や高精度な観測への収束など、いくつかの望ましい特性を持っている。
新しい理論(ectf)のアンサンブル近似も提示され、非ガウス分布を持つ有界な量を含む理想化された統計実験を用いて検証される。
これらの実験の結果、ectfの最大の利点は、観測誤差が予測の不確実性に対して小さいときと、状態変数が強い非線形依存を示すときである。
最終的に、新しいフィルタリング理論は、ai技術と原則的に統合することで、従来のdaアルゴリズムを改善するエキサイティングな方法を提供する。
関連論文リスト
- Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
本稿では,拡散モデルを用いてベイズ推定を行う方法を示す。
本稿では,新しいノイズスケジュールを用いて,標準的なDBMトレーニングを通じてそのようなマップを学習する方法を示す。
その結果は、低次元の潜在空間上で一意に定義される非常に表現性の高い生成モデルのクラスである。
論文 参考訳(メタデータ) (2024-07-11T19:58:19Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - A Unified Momentum-based Paradigm of Decentralized SGD for Non-Convex
Models and Heterogeneous Data [0.261072980439312]
非汎用目的に対する収束保証を提供するU.MP,D-MP,GT-Dという統一パラダイムを提案する。
理論的には、これらの非MPアルゴリズムに対して収束解析目的を2つのアプローチで提供する。
論文 参考訳(メタデータ) (2023-03-01T02:13:22Z) - Deep Generative Modeling on Limited Data with Regularization by
Nontransferable Pre-trained Models [32.52492468276371]
本稿では,限られたデータを用いた生成モデルの分散を低減するために,正規化深層生成モデル(Reg-DGM)を提案する。
Reg-DGMは、ある発散の重み付け和とエネルギー関数の期待を最適化するために、事前訓練されたモデルを使用する。
実験的に、様々な事前訓練された特徴抽出器とデータ依存エネルギー関数により、Reg-DGMはデータ制限のある強力なDGMの生成性能を一貫して改善する。
論文 参考訳(メタデータ) (2022-08-30T10:28:50Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - Low-rank statistical finite elements for scalable model-data synthesis [0.8602553195689513]
statFEMは、支配方程式に強制を埋め込むことによって、事前モデルの誤特定を認める。
この方法は、観測されたデータ生成過程を最小限の情報損失で再構築する。
本稿では、下層の密度共分散行列の低ランク近似を埋め込むことで、このハードルを克服する。
論文 参考訳(メタデータ) (2021-09-10T09:51:43Z) - Loss function based second-order Jensen inequality and its application
to particle variational inference [112.58907653042317]
粒子変分推論(PVI)は、後部分布の実験的近似としてモデルのアンサンブルを用いる。
PVIは、最適化されたモデルの多様性を保証するために、各モデルを反発力で反復的に更新する。
我々は,新たな一般化誤差を導出し,モデルの多様性を高めて低減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T12:13:51Z) - Latent Gaussian Model Boosting [0.0]
ツリーブースティングは多くのデータセットに対して優れた予測精度を示す。
シミュレーションおよび実世界のデータ実験において,既存の手法と比較して予測精度が向上した。
論文 参考訳(メタデータ) (2021-05-19T07:36:30Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
因果構造学習(CASTLE)の正規化を導入し,変数間の因果関係を共同学習することでニューラルネットワークの正規化を提案する。
CASTLEは因果的隣り合いを持つ因果的DAGの特徴のみを効率的に再構成する一方、再構成ベース正規化器は全ての入力特徴を過度に再構成する。
論文 参考訳(メタデータ) (2020-09-28T09:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。