論文の概要: Online Algorithms with Uncertainty-Quantified Predictions
- arxiv url: http://arxiv.org/abs/2310.11558v2
- Date: Mon, 3 Jun 2024 19:55:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 14:07:02.727354
- Title: Online Algorithms with Uncertainty-Quantified Predictions
- Title(参考訳): 不確かさを定量的に予測するオンラインアルゴリズム
- Authors: Bo Sun, Jerry Huang, Nicolas Christianson, Mohammad Hajiesmaili, Adam Wierman, Raouf Boutaba,
- Abstract要約: オンラインアルゴリズムの設計における不確実性定量化予測を最適に活用する問題について検討する。
特に,スキーレンタルとオンライン検索の2つの古典的オンライン問題について検討した。
我々は、UQ予測を完全に活用するために、アルゴリズム設計への非自明な修正が必要であることを実証する。
- 参考スコア(独自算出の注目度): 11.951228732915936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The burgeoning field of algorithms with predictions studies the problem of using possibly imperfect machine learning predictions to improve online algorithm performance. While nearly all existing algorithms in this framework make no assumptions on prediction quality, a number of methods providing uncertainty quantification (UQ) on machine learning models have been developed in recent years, which could enable additional information about prediction quality at decision time. In this work, we investigate the problem of optimally utilizing uncertainty-quantified predictions in the design of online algorithms. In particular, we study two classic online problems, ski rental and online search, where the decision-maker is provided predictions augmented with UQ describing the likelihood of the ground truth falling within a particular range of values. We demonstrate that non-trivial modifications to algorithm design are needed to fully leverage the UQ predictions. Moreover, we consider how to utilize more general forms of UQ, proposing an online learning framework that learns to exploit UQ to make decisions in multi-instance settings.
- Abstract(参考訳): 予測を伴うアルゴリズムの急成長する分野は、オンラインアルゴリズムのパフォーマンスを改善するために、潜在的に不完全な機械学習予測を使用することの問題を研究する。
このフレームワークの既存のアルゴリズムのほとんどすべてが予測品質を前提としていないが、機械学習モデルに不確実な定量化(UQ)を提供する方法が近年開発され、意思決定時の予測品質に関する追加情報を可能にしている。
本研究では,オンラインアルゴリズムの設計における不確実性定量化予測を最適に活用する問題について検討する。
特に,スキーレンタルとオンライン検索という2つの古典的なオンライン問題について検討し,意思決定者がUQを付加した予測を行い,基底真理が特定の範囲の値に収まる可能性について述べる。
我々は、UQ予測を完全に活用するために、アルゴリズム設計への非自明な修正が必要であることを実証する。
さらに、より一般的なUQの活用方法を考察し、マルチインスタンス環境での意思決定にUQを活用することを学ぶオンライン学習フレームワークを提案する。
関連論文リスト
- Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
アルゴリズム設計の最近の進歩は、過去のデータと現在のデータから得られた機械学習モデルによる予測の活用方法を示している。
この文脈における以前の研究は、予測器が過去のデータに基づいて事前訓練され、ブラックボックスとして使用されるパラダイムに焦点を当てていた。
本研究では,予測器を解き,アルゴリズムの課題の中で生じる学習問題を統合する。
論文 参考訳(メタデータ) (2024-03-12T08:40:21Z) - Minimalistic Predictions to Schedule Jobs with Online Precedence
Constraints [117.8317521974783]
オンライン優先制約による非サーボ的スケジューリングについて検討する。
アルゴリズムは、任意のジョブ依存に偏りがなく、前任者がすべて完了した場合に限り、ジョブについて学習する。
論文 参考訳(メタデータ) (2023-01-30T13:17:15Z) - Online TSP with Predictions [3.8411077568039866]
古典的オンライン旅行セールスマン問題(OLTSP)について検討する。
他の研究の予測モデルとは異なり、OLTSPの実際の要求はその到着時間と位置に関連しており、予測された要求と一致しないかもしれない。
我々の主な成果は、様々な予測モデルと設計アルゴリズムを研究し、異なる設定で最もよく知られた結果を改善することである。
論文 参考訳(メタデータ) (2022-06-30T15:35:53Z) - Online Algorithms with Multiple Predictions [17.803569868141647]
本稿では,複数の機械学習予測を付加したオンラインアルゴリズムについて検討する。
我々のアルゴリズムは、オンラインアルゴリズムの古典的ポテンシャルに基づく分析に予測の利用を取り入れている。
論文 参考訳(メタデータ) (2022-05-08T17:33:01Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
非論理的スケジューリングでは、優先度不明な処理条件でジョブをスケジューリングするためのオンライン戦略を見つけることが課題である。
我々はこのよく研究された問題を、アルゴリズム設計に(信頼できない)予測を統合する、最近人気の高い学習強化された設定で再検討する。
これらの予測には所望の特性があり, 高い性能保証を有するアルゴリズムと同様に, 自然な誤差測定が可能であることを示す。
論文 参考訳(メタデータ) (2022-02-21T13:18:11Z) - Learning Predictions for Algorithms with Predictions [49.341241064279714]
予測器を学習するアルゴリズムに対して,一般的な設計手法を導入する。
オンライン学習の手法を応用して、敵のインスタンスに対して学習し、堅牢性と一貫性のあるトレードオフを調整し、新しい統計的保証を得る。
両部マッチング,ページマイグレーション,スキーレンタル,ジョブスケジューリングの手法を解析することにより,学習アルゴリズムの導出におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-18T17:25:43Z) - Parsimonious Learning-Augmented Caching [29.975391787684966]
本稿では,学習補助アルゴリズムが同時に予測を利用できるような設定を導入し,研究する。
定量的に類似した結果が得られるが、予測のサブ線形数のみを用いることを示す。
論文 参考訳(メタデータ) (2022-02-09T03:40:11Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
我々は、古典的で有名なオンライングラフ探索問題の学習強化版について研究する。
本稿では,予測をよく知られたNearest Neighbor(NN)アルゴリズムに自然に統合するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-10T10:02:31Z) - Double Coverage with Machine-Learned Advice [100.23487145400833]
オンラインの基本的な$k$-serverの問題を学習強化環境で研究する。
我々のアルゴリズムは任意の k に対してほぼ最適の一貫性-破壊性トレードオフを達成することを示す。
論文 参考訳(メタデータ) (2021-03-02T11:04:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。