論文の概要: Online Algorithms with Multiple Predictions
- arxiv url: http://arxiv.org/abs/2205.03921v1
- Date: Sun, 8 May 2022 17:33:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-11 03:24:24.331357
- Title: Online Algorithms with Multiple Predictions
- Title(参考訳): 複数の予測付きオンラインアルゴリズム
- Authors: Keerti Anand, Rong Ge, Amit Kumar, Debmalya Panigrahi
- Abstract要約: 本稿では,複数の機械学習予測を付加したオンラインアルゴリズムについて検討する。
我々のアルゴリズムは、オンラインアルゴリズムの古典的ポテンシャルに基づく分析に予測の利用を取り入れている。
- 参考スコア(独自算出の注目度): 17.803569868141647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies online algorithms augmented with multiple machine-learned
predictions. While online algorithms augmented with a single prediction have
been extensively studied in recent years, the literature for the multiple
predictions setting is sparse. In this paper, we give a generic algorithmic
framework for online covering problems with multiple predictions that obtains
an online solution that is competitive against the performance of the best
predictor. Our algorithm incorporates the use of predictions in the classic
potential-based analysis of online algorithms. We apply our algorithmic
framework to solve classical problems such as online set cover, (weighted)
caching, and online facility location in the multiple predictions setting. Our
algorithm can also be robustified, i.e., the algorithm can be simultaneously
made competitive against the best prediction and the performance of the best
online algorithm (without prediction).
- Abstract(参考訳): 本稿では,複数の機械学習予測を用いたオンラインアルゴリズムについて検討する。
単一の予測で拡張されたオンラインアルゴリズムは近年広く研究されているが、複数の予測設定の文献は乏しい。
本稿では,最適予測器の性能と競合するオンラインソリューションを得るための,複数の予測による問題を網羅する汎用的なアルゴリズムフレームワークを提案する。
我々のアルゴリズムは、オンラインアルゴリズムの古典的ポテンシャルに基づく分析に予測の利用を取り入れている。
我々は,オンライン・セット・カバーや(重み付けされた)キャッシュ,オンライン施設位置といった古典的な問題を解決するために,アルゴリズム・フレームワークを適用した。
アルゴリズムは、最も優れた予測と(予測なしで)最高のオンラインアルゴリズムのパフォーマンスとを同時に競合させることができる。
関連論文リスト
- Improving Online Algorithms via ML Predictions [19.03466073202238]
我々は,スキーレンタルと非好ましくないジョブスケジューリングの2つの古典的問題を考察し,予測を用いて意思決定を行う新しいオンラインアルゴリズムを得る。
これらのアルゴリズムは予測器の性能を損なうものであり、より良い予測で改善するが、予測が貧弱な場合はあまり劣化しない。
論文 参考訳(メタデータ) (2024-07-25T02:17:53Z) - Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
アルゴリズム設計の最近の進歩は、過去のデータと現在のデータから得られた機械学習モデルによる予測の活用方法を示している。
この文脈における以前の研究は、予測器が過去のデータに基づいて事前訓練され、ブラックボックスとして使用されるパラダイムに焦点を当てていた。
本研究では,予測器を解き,アルゴリズムの課題の中で生じる学習問題を統合する。
論文 参考訳(メタデータ) (2024-03-12T08:40:21Z) - Algorithms with Prediction Portfolios [23.703372221079306]
我々は、マッチング、ロードバランシング、非クレアボイラントスケジューリングなど、多くの基本的な問題に対する複数の予測器の使用について検討する。
これらの問題のそれぞれに対して、複数の予測器を利用する新しいアルゴリズムを導入し、その結果のパフォーマンスに限界を証明します。
論文 参考訳(メタデータ) (2022-10-22T12:58:07Z) - Online TSP with Predictions [3.8411077568039866]
古典的オンライン旅行セールスマン問題(OLTSP)について検討する。
他の研究の予測モデルとは異なり、OLTSPの実際の要求はその到着時間と位置に関連しており、予測された要求と一致しないかもしれない。
我々の主な成果は、様々な予測モデルと設計アルゴリズムを研究し、異なる設定で最もよく知られた結果を改善することである。
論文 参考訳(メタデータ) (2022-06-30T15:35:53Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
非論理的スケジューリングでは、優先度不明な処理条件でジョブをスケジューリングするためのオンライン戦略を見つけることが課題である。
我々はこのよく研究された問題を、アルゴリズム設計に(信頼できない)予測を統合する、最近人気の高い学習強化された設定で再検討する。
これらの予測には所望の特性があり, 高い性能保証を有するアルゴリズムと同様に, 自然な誤差測定が可能であることを示す。
論文 参考訳(メタデータ) (2022-02-21T13:18:11Z) - Learning Predictions for Algorithms with Predictions [49.341241064279714]
予測器を学習するアルゴリズムに対して,一般的な設計手法を導入する。
オンライン学習の手法を応用して、敵のインスタンスに対して学習し、堅牢性と一貫性のあるトレードオフを調整し、新しい統計的保証を得る。
両部マッチング,ページマイグレーション,スキーレンタル,ジョブスケジューリングの手法を解析することにより,学習アルゴリズムの導出におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-18T17:25:43Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
我々は、古典的で有名なオンライングラフ探索問題の学習強化版について研究する。
本稿では,予測をよく知られたNearest Neighbor(NN)アルゴリズムに自然に統合するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-10T10:02:31Z) - Double Coverage with Machine-Learned Advice [100.23487145400833]
オンラインの基本的な$k$-serverの問題を学習強化環境で研究する。
我々のアルゴリズムは任意の k に対してほぼ最適の一貫性-破壊性トレードオフを達成することを示す。
論文 参考訳(メタデータ) (2021-03-02T11:04:33Z) - Online Paging with a Vanishing Regret [6.520803851931362]
本稿では,オンラインアルゴリズムが複数の予測器にアクセスでき,ページ到着時刻の予測列を生成するオンラインページング問題の変種について考察する。
予測器は時折予測誤差を発生させ、そのうちの少なくとも1つが予測誤差のサブ線形数を生成すると仮定する。
この仮定は、最適オフラインアルゴリズムに対する時間平均後悔が無限大になる傾向にあるランダム化オンラインアルゴリズムの設計に十分であることを示す。
論文 参考訳(メタデータ) (2020-11-18T18:17:49Z) - The Primal-Dual method for Learning Augmented Algorithms [10.2730668356857]
我々は、オンラインアルゴリズムの原始二重法を拡張し、次のアクションについてオンラインアルゴリズムにアドバイスする予測を組み込む。
我々のアルゴリズムは、予測が正確である場合にも、予測が誤解を招くとき、適切な保証を維持しながら、どのオンラインアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-22T11:58:47Z) - Optimal Robustness-Consistency Trade-offs for Learning-Augmented Online
Algorithms [85.97516436641533]
機械学習予測を取り入れたオンラインアルゴリズムの性能向上の課題について検討する。
目標は、一貫性と堅牢性の両方を備えたアルゴリズムを設計することだ。
機械学習予測を用いた競合解析のための非自明な下界の最初のセットを提供する。
論文 参考訳(メタデータ) (2020-10-22T04:51:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。