Cloud-Magnetic Resonance Imaging System: In the Era of 6G and Artificial
Intelligence
- URL: http://arxiv.org/abs/2310.11641v1
- Date: Wed, 18 Oct 2023 00:35:05 GMT
- Title: Cloud-Magnetic Resonance Imaging System: In the Era of 6G and Artificial
Intelligence
- Authors: Yirong Zhou, Yanhuang Wu, Yuhan Su, Jing Li, Jianyun Cai, Yongfu You,
Di Guo, Xiaobo Qu
- Abstract summary: Cloud-MRI aims at solving the problems of MRI data storage security, transmission speed, AI algorithm maintenance, hardware upgrading, and collaborative work.
The Cloud-MRI system will save the raw imaging data, reduce the risk of data loss, facilitate inter-institutional medical collaboration, and finally improve diagnostic accuracy and work efficiency.
- Score: 12.197732418084557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) plays an important role in medical
diagnosis, generating petabytes of image data annually in large hospitals. This
voluminous data stream requires a significant amount of network bandwidth and
extensive storage infrastructure. Additionally, local data processing demands
substantial manpower and hardware investments. Data isolation across different
healthcare institutions hinders cross-institutional collaboration in clinics
and research. In this work, we anticipate an innovative MRI system and its four
generations that integrate emerging distributed cloud computing, 6G bandwidth,
edge computing, federated learning, and blockchain technology. This system is
called Cloud-MRI, aiming at solving the problems of MRI data storage security,
transmission speed, AI algorithm maintenance, hardware upgrading, and
collaborative work. The workflow commences with the transformation of k-space
raw data into the standardized Imaging Society for Magnetic Resonance in
Medicine Raw Data (ISMRMRD) format. Then, the data are uploaded to the cloud or
edge nodes for fast image reconstruction, neural network training, and
automatic analysis. Then, the outcomes are seamlessly transmitted to clinics or
research institutes for diagnosis and other services. The Cloud-MRI system will
save the raw imaging data, reduce the risk of data loss, facilitate
inter-institutional medical collaboration, and finally improve diagnostic
accuracy and work efficiency.
Related papers
- PhaseGen: A Diffusion-Based Approach for Complex-Valued MRI Data Generation [1.683019219727036]
Magnetic resonance imaging (MRI) raw data, or k-Space data, is complex-valued, containing both magnitude and phase information.
We introduce $textitPhaseGen$, a novel complex-valued diffusion model for generating synthetic MRI raw data conditioned on magnitude images.
Our results show that training with synthetic phase data significantly improves generalization for skull-stripping on real-world data.
arXiv Detail & Related papers (2025-04-10T08:44:19Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - Synthetic Brain Images: Bridging the Gap in Brain Mapping With Generative Adversarial Model [0.0]
This work investigates the use of Deep Convolutional Generative Adversarial Networks (DCGAN) for producing high-fidelity and realistic MRI image slices.
While the discriminator network discerns between created and real slices, the generator network learns to synthesise realistic MRI image slices.
The generator refines its capacity to generate slices that closely mimic real MRI data through an adversarial training approach.
arXiv Detail & Related papers (2024-04-11T05:06:51Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Attention Hybrid Variational Net for Accelerated MRI Reconstruction [7.046523233290946]
The application of compressed sensing (CS)-enabled data reconstruction for accelerating magnetic resonance imaging (MRI) remains a challenging problem.
This is due to the fact that the information lost in k-space from the acceleration mask makes it difficult to reconstruct an image similar to the quality of a fully sampled image.
We propose a deep learning-based attention hybrid variational network that performs learning in both the k-space and image domain.
arXiv Detail & Related papers (2023-06-21T16:19:07Z) - Learning Federated Visual Prompt in Null Space for MRI Reconstruction [83.71117888610547]
We propose a new algorithm, FedPR, to learn federated visual prompts in the null space of global prompt for MRI reconstruction.
FedPR significantly outperforms state-of-the-art FL algorithms with 6% of communication costs when given the limited amount of local training data.
arXiv Detail & Related papers (2023-03-28T17:46:16Z) - Scale-Equivariant Unrolled Neural Networks for Data-Efficient
Accelerated MRI Reconstruction [33.82162420709648]
We propose modeling the proximal operators of unrolled neural networks with scale-equivariant convolutional neural networks.
Our approach demonstrates strong improvements over the state-of-the-art unrolled neural networks under the same memory constraints.
arXiv Detail & Related papers (2022-04-21T23:29:52Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Edge-Enhanced Dual Discriminator Generative Adversarial Network for Fast
MRI with Parallel Imaging Using Multi-view Information [10.616409735438756]
We introduce a novel parallel imaging coupled dual discriminator generative adversarial network (PIDD-GAN) for fast multi-channel MRI reconstruction.
One discriminator is used for holistic image reconstruction, whereas the other one is responsible for enhancing edge information.
Results show that our PIDD-GAN provides high-quality reconstructed MR images, with well-preserved edge information.
arXiv Detail & Related papers (2021-12-10T10:49:26Z) - Engineering AI Tools for Systematic and Scalable Quality Assessment in
Magnetic Resonance Imaging [0.0]
Building a big MRI data repository has multiple challenges related to privacy, data size, DICOM format, logistics, and non-standardized images.
Not only building the data repository is difficult, but using data pooled from the repository is also challenging.
This position paper describes challenges in constructing a large MRI data repository and using data downloaded from such data repositories in various aspects.
arXiv Detail & Related papers (2021-12-02T22:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.