Synthetic Brain Images: Bridging the Gap in Brain Mapping With Generative Adversarial Model
- URL: http://arxiv.org/abs/2404.08703v1
- Date: Thu, 11 Apr 2024 05:06:51 GMT
- Title: Synthetic Brain Images: Bridging the Gap in Brain Mapping With Generative Adversarial Model
- Authors: Drici Mourad, Kazeem Oluwakemi Oseni,
- Abstract summary: This work investigates the use of Deep Convolutional Generative Adversarial Networks (DCGAN) for producing high-fidelity and realistic MRI image slices.
While the discriminator network discerns between created and real slices, the generator network learns to synthesise realistic MRI image slices.
The generator refines its capacity to generate slices that closely mimic real MRI data through an adversarial training approach.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) is a vital modality for gaining precise anatomical information, and it plays a significant role in medical imaging for diagnosis and therapy planning. Image synthesis problems have seen a revolution in recent years due to the introduction of deep learning techniques, specifically Generative Adversarial Networks (GANs). This work investigates the use of Deep Convolutional Generative Adversarial Networks (DCGAN) for producing high-fidelity and realistic MRI image slices. The suggested approach uses a dataset with a variety of brain MRI scans to train a DCGAN architecture. While the discriminator network discerns between created and real slices, the generator network learns to synthesise realistic MRI image slices. The generator refines its capacity to generate slices that closely mimic real MRI data through an adversarial training approach. The outcomes demonstrate that the DCGAN promise for a range of uses in medical imaging research, since they show that it can effectively produce MRI image slices if we train them for a consequent number of epochs. This work adds to the expanding corpus of research on the application of deep learning techniques for medical image synthesis. The slices that are could be produced possess the capability to enhance datasets, provide data augmentation in the training of deep learning models, as well as a number of functions are made available to make MRI data cleaning easier, and a three ready to use and clean dataset on the major anatomical plans.
Related papers
- An Ensemble Approach for Brain Tumor Segmentation and Synthesis [0.12777007405746044]
The integration of machine learning in magnetic resonance imaging (MRI) is proving to be incredibly effective.
Deep learning models utilize multiple layers of processing to capture intricate details of complex data.
We propose a deep learning framework that ensembles state-of-the-art architectures to achieve accurate segmentation.
arXiv Detail & Related papers (2024-11-26T17:28:51Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Generative Adversarial Networks for Brain Images Synthesis: A Review [2.609784101826762]
In medical imaging, image synthesis is the estimation process of one image (sequence, modality) from another image (sequence, modality)
generative adversarial network (GAN) as one of the most popular generative-based deep learning methods.
We summarized the recent developments of GANs for cross-modality brain image synthesis including CT to PET, CT to MRI, MRI to PET, and vice versa.
arXiv Detail & Related papers (2023-05-16T17:28:06Z) - Edge-Enhanced Dual Discriminator Generative Adversarial Network for Fast
MRI with Parallel Imaging Using Multi-view Information [10.616409735438756]
We introduce a novel parallel imaging coupled dual discriminator generative adversarial network (PIDD-GAN) for fast multi-channel MRI reconstruction.
One discriminator is used for holistic image reconstruction, whereas the other one is responsible for enhancing edge information.
Results show that our PIDD-GAN provides high-quality reconstructed MR images, with well-preserved edge information.
arXiv Detail & Related papers (2021-12-10T10:49:26Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
We have developed a framework that uses Deep Transfer Learning to perform a multi-classification of tumors in the brain MRI images.
Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a classification accuracy of 86.40%.
Results of our experiments significantly demonstrate our proposed framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks.
arXiv Detail & Related papers (2021-06-14T12:19:27Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - EEG to fMRI Synthesis: Is Deep Learning a candidate? [0.913755431537592]
This work provides the first comprehensive on how to use state-of-the-art principles from Neural Processing to synthesize fMRI data from electroencephalographic (EEG) view data.
A comparison of state-of-the-art synthesis approaches, including Autoencoders, Generative Adrial Networks and Pairwise Learning, is undertaken.
Results highlight the feasibility of EEG to fMRI brain image mappings, pinpointing the role of current advances in Machine Learning and showing the relevance of upcoming contributions to further improve performance.
arXiv Detail & Related papers (2020-09-29T16:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.