論文の概要: Field-testing items using artificial intelligence: Natural language
processing with transformers
- arxiv url: http://arxiv.org/abs/2310.11655v1
- Date: Wed, 18 Oct 2023 01:56:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-19 18:08:40.072477
- Title: Field-testing items using artificial intelligence: Natural language
processing with transformers
- Title(参考訳): 人工知能を用いたフィールドテスト項目:トランスフォーマーを用いた自然言語処理
- Authors: Hotaka Maeda
- Abstract要約: 5万種類のRoBERTaモデルが29の質問で英語の識字試験を完了した。
対象項目の心理測定特性の算出にデータを用い,ヒト検診データとある程度の一致を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Five thousand variations of the RoBERTa model, an artificially intelligent
"transformer" that can understand text language, completed an English literacy
exam with 29 multiple-choice questions. Data were used to calculate the
psychometric properties of the items, which showed some degree of agreement to
those obtained from human examinee data.
- Abstract(参考訳): テキスト言語を理解できる人工知能の「トランスフォーマー」であるRoBERTaモデルの5万種類が、29の質問で英語の識字試験を完了した。
データは項目の心理測定特性を計算し、ヒトの検査データから得られたものとある程度の一致を示した。
関連論文リスト
- Distinguishing Chatbot from Human [1.1249583407496218]
我々は,75万以上の人文文からなる新しいデータセットを開発した。
このデータセットに基づいて、テキストの起源を決定するために機械学習(ML)技術を適用する。
提案手法は高い分類精度を提供し,テキスト解析に有用なツールである。
論文 参考訳(メタデータ) (2024-08-03T13:18:04Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - Retrieval and Generative Approaches for a Pregnancy Chatbot in Nepali
with Stemmed and Non-Stemmed Data : A Comparative Study [0.0]
ネパール語のデータセットのパフォーマンスは、それぞれのアプローチで分析されている。
BERTをベースとした事前学習モデルでは,スクラッチトランスフォーマーモデルではスクラッチデータの性能が良好である。
論文 参考訳(メタデータ) (2023-11-12T17:16:46Z) - Can Language Models Learn to Listen? [96.01685069483025]
本稿では,話者の言葉に基づく社会的対話における聞き手から適切な表情応答を生成するための枠組みを提案する。
提案手法は,VQ-VAEを用いて定量化したリスナーの顔のジェスチャー列であるリスナーの応答を自己回帰的に予測する。
生成したリスナーの動きは,定量的メトリクスと質的ユーザスタディを通じて,言語意味論に精通し,反映していることを示す。
論文 参考訳(メタデータ) (2023-08-21T17:59:02Z) - Conciseness: An Overlooked Language Task [11.940413163824887]
タスクを定義し、要約や単純化といった関連するタスクとは異なることを示す。
大規模なニューラルネットワークモデルによるゼロショットセットアップがよく機能しない場合、簡潔性は難しい課題であることを示す。
論文 参考訳(メタデータ) (2022-11-08T09:47:11Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
本研究は,統計的,ニューラルベース,トランスフォーマーベースの機械学習手法に基づく形式性検出手法の体系的研究を初めて行う。
単言語,多言語,言語横断の3種類の実験を行った。
本研究は,モノリンガルおよび多言語形式分類タスクのためのトランスフォーマーベースモデルに対するChar BiLSTMモデルの克服を示す。
論文 参考訳(メタデータ) (2022-04-19T16:23:07Z) - Evaluating the Morphosyntactic Well-formedness of Generated Texts [88.20502652494521]
L'AMBRE – テキストのモルフォシンタク的整形性を評価する指標を提案する。
形態的に豊かな言語に翻訳するシステムのダイアクロニックスタディを通じて,機械翻訳作業におけるメトリックの有効性を示す。
論文 参考訳(メタデータ) (2021-03-30T18:02:58Z) - mT5: A massively multilingual pre-trained text-to-text transformer [60.0210636815514]
The Text-to-Text Transfer Transformer (T5) は、統一されたテキスト・トゥ・テキストフォーマットとスケールを利用して、英語のNLPタスクで最先端の結果を得る。
101言語をカバーする新しいCommon Crawlベースのデータセットで事前トレーニングを行ったマルチ言語版T5であるmT5を紹介する。
論文 参考訳(メタデータ) (2020-10-22T17:58:14Z) - Chatbot Interaction with Artificial Intelligence: Human Data
Augmentation with T5 and Language Transformer Ensemble for Text
Classification [2.492300648514128]
本稿では,タスク分類のための深層学習チャットボットの訓練へのアプローチとして,人工知能(CI-AI)フレームワークを提案する。
このインテリジェントシステムは、大量のトレーニングデータを生成するために、人工的なパラフレーズによって人為的なデータを増強する。
トレーニングデータをT5モデルで拡張すると,すべてのモデルが改善されることがわかった。
論文 参考訳(メタデータ) (2020-10-12T19:37:18Z) - Bootstrapping Techniques for Polysynthetic Morphological Analysis [9.655349059913888]
ニューラルモルフォロジーアナライザをブートストラップするための言語的インフォームドアプローチを提案する。
有限状態トランスデューサからデータを生成し,エンコーダデコーダモデルを訓練する。
学習データに欠落する言語構造を「ハロシン化」し、Zipf分布から再サンプリングすることで、形態素のより自然な分布をシミュレートすることでモデルを改善する。
論文 参考訳(メタデータ) (2020-05-03T00:35:19Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。