Native two-qubit gates in fixed-coupling, fixed-frequency transmons beyond cross-resonance interaction
- URL: http://arxiv.org/abs/2310.12146v2
- Date: Mon, 20 May 2024 15:49:43 GMT
- Title: Native two-qubit gates in fixed-coupling, fixed-frequency transmons beyond cross-resonance interaction
- Authors: Ken Xuan Wei, Isaac Lauer, Emily Pritchett, William Shanks, David C. McKay, Ali Javadi-Abhari,
- Abstract summary: Cross-resonance gates have been the workhorse of fixed-coupling, fixed-frequency superconducting processors.
Here, we use on-resonant and off-resonant microwave drives to go beyond cross-resonance.
We show native two-qubit gates are better than their counterparts compiled from cross-resonance gates.
- Score: 1.0797934175846036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fixed-frequency superconducting qubits demonstrate remarkable success as platforms for stable and scalable quantum computing. Cross-resonance gates have been the workhorse of fixed-coupling, fixed-frequency superconducting processors, leveraging the entanglement generated by driving one qubit resonantly with a neighbor's frequency to achieve high-fidelity, universal CNOTs. Here, we use on-resonant and off-resonant microwave drives to go beyond cross-resonance, realizing natively interesting two-qubit gates that are not equivalent to CNOTs. In particular, we implement and benchmark native ISWAP, SWAP, $\sqrt{\text{ISWAP}}$, and BSWAP gates. Furthermore, we apply these techniques for an efficient construction of the B-gate: a perfect entangler from which any two-qubit gate can be reached in only two applications. We show these native two-qubit gates are better than their counterparts compiled from cross-resonance gates. We elucidate the resonance conditions required to drive each two-qubit gate and provide a novel frame tracking technique to implement them in Qiskit.
Related papers
- A diverse set of two-qubit gates for spin qubits in semiconductor quantum dots [5.228819198411081]
We propose and verify a fast composite two-qubit gate scheme to extend the available two-qubit gate types.
Our gate scheme limits the parameter requirements of all essential two-qubit gates to a common JDeltaE_Z region.
With this versatile composite gate scheme, broad-spectrum two-qubit operations allow us to efficiently utilize the hardware and the underlying physics resources.
arXiv Detail & Related papers (2024-04-29T13:37:43Z) - High-fidelity $\sqrt{i\text{SWAP}}$ gates using a fixed coupler driven by two microwave pulses [12.986786945391236]
We propose a microwave-control protocol for the implementation of a two-qubit gate employing two transmon qubits coupled via a fixed-frequency transmon coupler.
We show that high-fidelity $sqrtitextSWAP$ gates can be achieved.
arXiv Detail & Related papers (2024-04-27T08:08:20Z) - Fast ZZ-Free Entangling Gates for Superconducting Qubits Assisted by a
Driven Resonator [42.152052307404]
We propose a simple scheme to cancel stray interactions between qubits.
We numerically show that such a scheme can enable short and high-fidelity entangling gates.
Our architecture is not only ZZ free but also contains no extra noisy components.
arXiv Detail & Related papers (2023-11-02T15:42:02Z) - A SWAP Gate for Spin Qubits in Silicon [5.6151418663848744]
We show a fast SWAP gate with a duration of 25 ns based on quantum dots in isotopically enriched silicon.
We calibrate the single-qubit local phases during the SWAP gate by incorporating single-qubit gates in our circuit.
These results pave the way for high fidelity SWAP gates, and processes based on them, such as quantum communication on chip and quantum simulation.
arXiv Detail & Related papers (2023-10-10T15:24:15Z) - Three-qubit Parity Gate via Simultaneous Cross Resonance Drives [0.0]
We show an efficient implementation of a three-qubit parity gate on two control qubits with a common target.
We also demonstrate that our simultaneous parity gates can significantly improve the parity measurement error probability for the heavy-hexagon code on an IBM Quantum processor.
arXiv Detail & Related papers (2023-09-20T13:13:00Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Scalable quantum computation with fast gates in two-dimensional
microtrap arrays of trapped ions [68.8204255655161]
We investigate the use of fast pulsed two-qubit gates for trapped ion quantum computing in a two-dimensional microtrap architecture.
We demonstrate that fast pulsed gates are capable of implementing high-fidelity entangling operations between ions in neighbouring traps faster than the trapping period.
arXiv Detail & Related papers (2020-05-01T13:18:22Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.