Continuous variable quantum computation of the $O(3)$ model in 1+1 dimensions
- URL: http://arxiv.org/abs/2310.12512v2
- Date: Wed, 15 May 2024 01:54:36 GMT
- Title: Continuous variable quantum computation of the $O(3)$ model in 1+1 dimensions
- Authors: Raghav G. Jha, Felix Ringer, George Siopsis, Shane Thompson,
- Abstract summary: We formulate the $O(3)$ non-linear sigma model in 1+1 dimensions as a limit of a three-component scalar field theory.
We construct the ground state and excited states using the coupled-cluster Ansatz.
We present the simulation protocol for the time evolution of the model using CV gates and obtain numerical results using a photonic quantum simulator.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We formulate the $O(3)$ non-linear sigma model in 1+1 dimensions as a limit of a three-component scalar field theory restricted to the unit sphere in the large squeezing limit. This allows us to describe the model in terms of the continuous variable (CV) approach to quantum computing. We construct the ground state and excited states using the coupled-cluster Ansatz and find excellent agreement with the exact diagonalization results for a small number of lattice sites. We then present the simulation protocol for the time evolution of the model using CV gates and obtain numerical results using a photonic quantum simulator. We expect that the methods developed in this work will be useful for exploring interesting dynamics for a wide class of sigma models and gauge theories, as well as for simulating scattering events on quantum hardware in the coming decades.
Related papers
- Quantum Simulation of an Open System: A Dissipative 1+1D Ising Model [0.0]
We implement quantum algorithms for the simulation of open or complex coupling quantum field theories on IBM devices.
Our successful reproduction of the transition represents a non-trivial test for current hardware.
arXiv Detail & Related papers (2023-11-30T17:25:48Z) - Preparation for Quantum Simulation of the 1+1D O(3) Non-linear
{\sigma}-Model using Cold Atoms [0.0]
The 1+1D O(3) non-linear sigma-model is a model system for future quantum lattice simulations of otherally-free theories.
We show that a rectangular array of 48 Rydberg atoms should be able to adiabatically prepare low-energy states of the perturbatively-matched theory.
arXiv Detail & Related papers (2022-11-14T19:01:47Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Entanglement Hamiltonian Tomography in Quantum Simulation [0.0]
Entanglement in quantum simulators is an outstanding challenge in today's era of intermediate scale quantum devices.
Here we discuss an efficient tomographic protocol for reconstructing reduced density matrices and entanglement spectra for spin systems.
We show the validity and efficiency of the protocol for a long-range Ising model in 1D using numerical simulations.
arXiv Detail & Related papers (2020-09-18T18:12:22Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Toward scalable simulations of Lattice Gauge Theories on quantum
computers [0.0]
We provide a resource for simulations of real-time dynamics in lattice gauge theories on arbitrary dimensions.
We study the phenomena of flux-string breaking up to a genuine bi-dimensional model using classical quantum circuits.
arXiv Detail & Related papers (2020-05-20T18:00:30Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.