A contextuality witness inspired by optimal state discrimination
- URL: http://arxiv.org/abs/2310.12716v2
- Date: Fri, 23 Feb 2024 10:45:03 GMT
- Title: A contextuality witness inspired by optimal state discrimination
- Authors: Carles Roch i Carceller and Jonatan Bohr Brask
- Abstract summary: We present a witness for preparation contextuality inspired by optimal two-state discrimination.
The main idea is based on finding the accessible probabilities averaged success and error in both classical and quantum models.
We can then construct a noncontextuality inequality and associated witness which we find to be robust against depolarising noise and loss in the form of inconclusive events.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many protocols and tasks in quantum information science rely inherently on
the fundamental notion of contextuality to provide advantages over their
classical counterparts, and contextuality represents one of the main
differences between quantum and classical physics. In this work we present a
witness for preparation contextuality inspired by optimal two-state
discrimination. The main idea is based on finding the accessible averaged
success and error probabilities in both classical and quantum models. We can
then construct a noncontextuality inequality and associated witness which we
find to be robust against depolarising noise and loss in the form of
inconclusive events.
Related papers
- Characterizing Contextuality via Rank Separation with Applications to Cloning [0.0]
Quantum contextuality is a key nonclassical feature essential for understanding advantages in quantum computation and communication.
We introduce a new framework to study contextuality based solely on information processing statistics.
We show that quantum contextuality provides the resource in optimal phase-covariant and universal cloning schemes.
arXiv Detail & Related papers (2024-06-27T17:56:04Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Corrected Bell and Noncontextuality Inequalities for Realistic Experiments [1.099532646524593]
Contextuality is a feature of quantum correlations.
It is crucial from a foundational perspective as a nonclassical phenomenon, and from an applied perspective as a resource for quantum advantage.
We prove the continuity of a known measure of contextuality, the contextual fraction, which ensures its robustness to noise.
We then bound the extent to which these relaxations can account for contextuality, culminating in a notion of genuine contextuality, which is robust to experimental imperfections.
arXiv Detail & Related papers (2023-10-30T09:43:39Z) - Classical Verification of Quantum Learning [42.362388367152256]
We develop a framework for classical verification of quantum learning.
We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples.
Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents.
arXiv Detail & Related papers (2023-06-08T00:31:27Z) - Experimental Test of Contextuality based on State Discrimination with a
Single Qubit [16.530085733940528]
We extend the scope of experimental test of contextuality to a minimal quantum system of only two states (qubit)
We observe a substantial violation of a no-go inequality derived by assuming non-contextuality.
We also quantify the contextual advantage of state discrimination and the tolerance against quantum noises.
arXiv Detail & Related papers (2022-06-22T04:03:04Z) - Contextual advantages and certification for maximum confidence
discrimination [1.3124513975412255]
We consider a maximum confidence measurement that unifies different strategies of quantum state discrimination.
We first show that maximum confidence discrimination, as well as unambiguous discrimination, contains contextual advantages.
Our results establish how the advantages of quantum theory over a classical model may appear in a realistic scenario of a discrimination task.
arXiv Detail & Related papers (2021-12-17T16:58:16Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Experimental multi-state quantum discrimination through a Quantum
network [63.1241529629348]
We have experimentally implemented two discrimination schemes in a minimum-error scenario based on a receiver featured by a network structure and a dynamical processing of information.
The first protocol achieves binary optimal discrimination, while the second one provides a novel approach to multi-state quantum discrimination, relying on the dynamical features of the network-like receiver.
arXiv Detail & Related papers (2021-07-21T09:26:48Z) - On Possibilistic Conditions to Contextuality and Nonlocality [0.0]
We provide some insights into logical contextuality and inequality-free proofs.
We show the existence of possibilistic paradoxes whose occurrence is a necessary and sufficient condition for logical contextuality.
arXiv Detail & Related papers (2020-11-08T23:52:40Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Experimental certification of nonclassicality via phase-space
inequalities [58.720142291102135]
We present the first experimental implementation of the recently introduced phase-space inequalities for nonclassicality certification.
We demonstrate the practicality and sensitivity of this approach by studying nonclassicality of a family of noisy and lossy quantum states of light.
arXiv Detail & Related papers (2020-10-01T09:03:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.