A new foundation of quantum decision theory
- URL: http://arxiv.org/abs/2310.12762v4
- Date: Tue, 3 Sep 2024 09:37:18 GMT
- Title: A new foundation of quantum decision theory
- Authors: Inge S. Helland,
- Abstract summary: It is assumed that each accessible variable can be seen as a function of a specific inaccessible variable.
Two basic assumptions behind the Born rule are 1) the likelihood principle, 2) the actor in question has motivations that can be modeled by a hypothetical perfectly rational higher being.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum decision theory is introduced here, and a new basis for this theory is proposed. It is first based upon the author's general arguments for the Hilbert space formalism in quantum theory, and next on arguments for the Born rule, that is, the basis for calculating quantum probabilities. A basic notion behind the quantum theory foundation is that of theoretical variables, that are divided into accessible and inaccessible ones. This is here specialized to decision variables. It is assumed that each accessible variable can be seen as a function of a specific inaccessible variable. Another assumption is that there exist two maximal accessible theoretical variables in the given situation. Two basic assumptions behind the Born rule are 1) the likelihood principle, 2) the actor in question has motivations that can be modeled by a hypothetical perfectly rational higher being. The theory is illustrated by a medical example. Finally, a broad discussion of decision processes is given.
Related papers
- Generalized Quantum Stein's Lemma and Second Law of Quantum Resource Theories [47.02222405817297]
A fundamental question in quantum information theory is whether an analogous second law can be formulated to characterize the convertibility of resources for quantum information processing by a single function.
In 2008, a promising formulation was proposed, linking resource convertibility to the optimal performance of a variant of the quantum version of hypothesis testing.
In 2023, a logical gap was found in the original proof of this lemma, casting doubt on the possibility of such a formulation of the second law.
arXiv Detail & Related papers (2024-08-05T18:00:00Z) - A new approach towards quantum foundation and some consequences [0.0]
A general theory based upon 6 postulates is introduced.
The basical notions are theoretical variables that are associated with an observer or with a group of communicating observers.
arXiv Detail & Related papers (2024-03-14T09:43:23Z) - Minimal Equational Theories for Quantum Circuits [44.99833362998488]
We show that any true equation on quantum circuits can be derived from simple rules.
One of our main contributions is to prove the minimality of the equational theory.
arXiv Detail & Related papers (2023-11-13T17:11:25Z) - What is \textit{Quantum} in Probabilistic Explanations of the Sure Thing
Principle Violation? [0.0]
The Prisoner's Dilemma game (PDG) is one of the simple test-beds for the probabilistic nature of the human decision-making process.
Quantum probabilistic models can explain this violation as a second-order interference effect.
We discuss the role of other quantum information-theoretical quantities, such as quantum entanglement, in the decision-making process.
arXiv Detail & Related papers (2023-06-21T00:01:01Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - An alternative foundation of quantum theory [0.0]
A new approach to quantum theory is proposed in this paper.
The accessible variables are just ideal observations connected to an observer or to some communicating observers.
It is shown here that the groups and transformations needed in this approach can be constructed explicitly in the case where the accessible variables are finite-dimensional.
arXiv Detail & Related papers (2023-05-11T11:12:00Z) - Why we should interpret density matrices as moment matrices: the case of
(in)distinguishable particles and the emergence of classical reality [69.62715388742298]
We introduce a formulation of quantum theory (QT) as a general probabilistic theory but expressed via quasi-expectation operators (QEOs)
We will show that QT for both distinguishable and indistinguishable particles can be formulated in this way.
We will show that finitely exchangeable probabilities for a classical dice are as weird as QT.
arXiv Detail & Related papers (2022-03-08T14:47:39Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z) - Conceptual variables, quantum theory, and statistical inference theory [0.0]
A different approach towards quantum theory is proposed in this paper.
The basis is to be conceptual variables, physical variables that may be accessible or inaccessible, i.e., it may be possible or impossible to assign numerical values to them.
arXiv Detail & Related papers (2020-05-15T08:08:55Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Indeterminism and Undecidability [0.0]
Chaitin's follow-up to Goedel's (first) incompleteness theorem can be proved.
The main point is that Bell and others did not exploit the full empirical content of quantum mechanics.
arXiv Detail & Related papers (2020-03-07T11:06:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.