論文の概要: Enabling energy-Efficient object detection with surrogate gradient
descent in spiking neural networks
- arxiv url: http://arxiv.org/abs/2310.12985v1
- Date: Thu, 7 Sep 2023 15:48:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 16:42:34.936491
- Title: Enabling energy-Efficient object detection with surrogate gradient
descent in spiking neural networks
- Title(参考訳): スパイクニューラルネットワークにおける代理勾配降下によるエネルギー効率の高い物体検出
- Authors: Jilong Luo, Shanlin Xiao, Yinsheng Chen, Zhiyi Yu
- Abstract要約: スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、イベント駆動処理と処理時情報の両方において、生物学的にもっとも有効なニューラルネットワークモデルである。
本研究では,オブジェクト検出タスクにおける深部SNNのトレーニングを容易にするために,回帰問題を解くCurrent Mean Decoding(CMD)手法を提案する。
勾配サロゲートとCMDに基づいて,物体検出のためのSNN-YOLOv3モデルを提案する。
- 参考スコア(独自算出の注目度): 0.40054215937601956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) are a biologically plausible neural network
model with significant advantages in both event-driven processing and
spatio-temporal information processing, rendering SNNs an appealing choice for
energyefficient object detection. However, the non-differentiability of the
biological neuronal dynamics model presents a challenge during the training of
SNNs. Furthermore, a suitable decoding strategy for object detection in SNNs is
currently lacking. In this study, we introduce the Current Mean Decoding (CMD)
method, which solves the regression problem to facilitate the training of deep
SNNs for object detection tasks. Based on the gradient surrogate and CMD, we
propose the SNN-YOLOv3 model for object detection. Our experiments demonstrate
that SNN-YOLOv3 achieves a remarkable performance with an mAP of 61.87% on the
PASCAL VOC dataset, requiring only 6 time steps. Compared to SpikingYOLO, we
have managed to increase mAP by nearly 10% while reducing energy consumption by
two orders of magnitude.
- Abstract(参考訳): Spiking Neural Networks (SNN) は、イベント駆動処理と時空間情報処理の両方において、生物学的にもっとも有効なニューラルネットワークモデルである。
しかし, 生体神経力学モデルの非分化性は, SNNの訓練において課題となる。
さらに、SNNにおけるオブジェクト検出に適したデコード戦略が現在不足している。
本研究では,オブジェクト検出タスクにおける深部SNNのトレーニングを容易にするために,回帰問題を解くCurrent Mean Decoding(CMD)手法を提案する。
勾配サロゲートとCMDに基づいて,物体検出のためのSNN-YOLOv3モデルを提案する。
実験の結果,SNN-YOLOv3 は PASCAL VOC データセット上で 61.87% のmAP で顕著な性能を達成できた。
SpikingYOLOと比較して、エネルギー消費を2桁程度削減しながら、mAPを10%近く増加させました。
関連論文リスト
- Low Latency of object detection for spikng neural network [3.404826786562694]
スパイキングニューラルネットワークは、バイナリスパイクの性質のため、エッジAIアプリケーションに適している。
本稿では,オブジェクト検出に特化して,高精度で低遅延なSNNを生成することに焦点を当てる。
論文 参考訳(メタデータ) (2023-09-27T10:26:19Z) - Deep Directly-Trained Spiking Neural Networks for Object Detection [20.594942840081757]
EMS-YOLOは、オブジェクト検出のための、直接訓練されたSNNフレームワークである。
低消費電力で直接学習したSNNの深さを効果的に拡張できるフルスパイク残差ブロック EMS-ResNet を設計する。
このモデルでは、同じアーキテクチャでANNに匹敵する性能を達成できる一方で、5.83倍のエネルギーを消費できることが示されている。
論文 参考訳(メタデータ) (2023-07-21T08:10:26Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
ニューラルインスパイアされたイベント駆動処理でニューラルネットワーク(SNN)をスパイクすることで、非同期データを効率的に処理できる。
スパイク消滅問題を緩和するために,学習可能な神経力学を用いた適応型完全スパイキングフレームワークを提案する。
実験の結果,平均終端誤差(AEE)は最先端のANNと比較して平均13%減少した。
論文 参考訳(メタデータ) (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - SpikeDyn: A Framework for Energy-Efficient Spiking Neural Networks with
Continual and Unsupervised Learning Capabilities in Dynamic Environments [14.727296040550392]
スパイキングニューラルネットワーク(SNN)は、生物学的妥当性のため、効率的な教師なしおよび継続的な学習能力の可能性を秘めている。
動的環境下での継続学習と教師なし学習機能を備えたエネルギー効率の高いSNNのためのフレームワークであるSpikeDynを提案する。
論文 参考訳(メタデータ) (2021-02-28T08:26:23Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNNは、視覚オブジェクト追跡ベンチマークであるTB2013, VOT2016, GOT-10kにおいて、短いレイテンシと低い精度の損失を達成する最初のディープSNNトラッカーである。
SiamSNNは、ニューロモルフィックチップTrueNorth上で低エネルギー消費とリアルタイムを実現する。
論文 参考訳(メタデータ) (2020-03-17T08:49:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。