Approaches for Uncertainty Quantification of AI-predicted Material
Properties: A Comparison
- URL: http://arxiv.org/abs/2310.13136v1
- Date: Thu, 19 Oct 2023 20:20:39 GMT
- Title: Approaches for Uncertainty Quantification of AI-predicted Material
Properties: A Comparison
- Authors: Francesca Tavazza and Kamal Choudhary and Brian DeCost
- Abstract summary: Three easy-to-implement approaches to determine individual uncertainty are presented.
We focus on the direct machine learning of the prediction intervals and Ensemble methods.
- Score: 0.4037357056611557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of large databases of material properties, together with the
availability of powerful computers, has allowed machine learning (ML) modeling
to become a widely used tool for predicting material performances. While
confidence intervals are commonly reported for such ML models, prediction
intervals, i.e., the uncertainty on each prediction, are not as frequently
available. Here, we investigate three easy-to-implement approaches to determine
such individual uncertainty, comparing them across ten ML quantities spanning
energetics, mechanical, electronic, optical, and spectral properties.
Specifically, we focused on the Quantile approach, the direct machine learning
of the prediction intervals and Ensemble methods.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - Mutual Information-calibrated Conformal Feature Fusion for
Uncertainty-Aware Multimodal 3D Object Detection at the Edge [1.7898305876314982]
Three-dimensional (3D) object detection, a critical robotics operation, has seen significant advancements.
Our study integrates the principles of conformal inference with information theoretic measures to perform lightweight, Monte Carlo-free uncertainty estimation.
The framework demonstrates comparable or better performance in KITTI 3D object detection benchmarks to similar methods that are not uncertainty-aware.
arXiv Detail & Related papers (2023-09-18T09:02:44Z) - Entity Aware Modelling: A Survey [22.32009539611539]
Recent machine learning advances have led to new state-of-the-art response prediction models.
Models built at a population level often lead to sub-optimal performance in many personalized prediction settings.
In personalized prediction, the goal is to incorporate inherent characteristics of different entities to improve prediction performance.
arXiv Detail & Related papers (2023-02-16T16:33:33Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Uncertainty Prediction for Machine Learning Models of Material
Properties [0.0]
Uncertainty in AI-based predictions of material properties is of immense importance for the success and reliability of AI applications in material science.
We compare 3 different approaches to obtain such individual uncertainty, testing them on 12 ML-physical properties.
arXiv Detail & Related papers (2021-07-16T16:33:55Z) - Coalitional strategies for efficient individual prediction explanation [0.0]
This paper provides methods based on the detection of relevant groups of attributes -- named coalitions -- influencing a prediction.
Our results show that these coalitional methods are more efficient than existing ones such as SHapley Additive exPlanation.
arXiv Detail & Related papers (2021-04-01T21:00:23Z) - Spatiotemporal Attention for Multivariate Time Series Prediction and
Interpretation [17.568599402858037]
temporal attention mechanism (STAM) for simultaneous learning of the most important time steps and variables.
Results: STAM maintains state-of-the-art prediction accuracy while offering the benefit of accurate interpretability.
arXiv Detail & Related papers (2020-08-11T17:34:55Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.