論文の概要: Mean Estimation Under Heterogeneous Privacy Demands
- arxiv url: http://arxiv.org/abs/2310.13137v1
- Date: Thu, 19 Oct 2023 20:29:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 01:13:51.862326
- Title: Mean Estimation Under Heterogeneous Privacy Demands
- Title(参考訳): 不均一なプライバシー要求による平均推定
- Authors: Syomantak Chaudhuri, Konstantin Miagkov, Thomas A. Courtade
- Abstract要約: 本研究は,各ユーザが自身のプライバシレベルを設定できる平均推定の問題について考察する。
提案するアルゴリズムは,ミニマックス最適であり,ほぼ直線的な実行時間を有することを示す。
プライバシー要件が低いが異なるユーザは、すべて同じ金額で、必要以上のプライバシーを与えられる。
- 参考スコア(独自算出の注目度): 5.755004576310333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential Privacy (DP) is a well-established framework to quantify privacy
loss incurred by any algorithm. Traditional formulations impose a uniform
privacy requirement for all users, which is often inconsistent with real-world
scenarios in which users dictate their privacy preferences individually. This
work considers the problem of mean estimation, where each user can impose their
own distinct privacy level. The algorithm we propose is shown to be minimax
optimal and has a near-linear run-time. Our results elicit an interesting
saturation phenomenon that occurs. Namely, the privacy requirements of the most
stringent users dictate the overall error rates. As a consequence, users with
less but differing privacy requirements are all given more privacy than they
require, in equal amounts. In other words, these privacy-indifferent users are
given a nontrivial degree of privacy for free, without any sacrifice in the
performance of the estimator.
- Abstract(参考訳): differential privacy (dp)は、任意のアルゴリズムによって引き起こされるプライバシー損失を定量化する、確立されたフレームワークである。
従来の定式化では、すべてのユーザに統一されたプライバシー要件が課されており、これはユーザがプライバシの好みを個別に決定する現実世界のシナリオと矛盾することが多い。
この研究は、各ユーザーが独自のプライバシーレベルを課すことができる平均推定の問題を考える。
提案するアルゴリズムは,ミニマックス最適であり,ほぼ直線的な実行時間を有することを示す。
私たちの結果は興味深い飽和現象を引き起こします。
つまり、最も厳格なユーザーのプライバシー要件は、全体のエラー率を規定する。
その結果、プライバシ要件が小さいが異なるユーザは、必要以上のプライバシを平等に与えられることになる。
言い換えれば、これらのプライバシーに無関心なユーザーは、推定器の性能を犠牲にすることなく、無料で非自明なプライバシーを与えられる。
関連論文リスト
- Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Personalized Differential Privacy for Ridge Regression [3.4751583941317166]
我々はPDP-OP(Personalized-DP Output Perturbation Method)を導入し、データポイントごとのプライバシレベルに応じてリッジ回帰モデルのトレーニングを可能にする。
我々は、PDP-OPの厳密なプライバシー証明と、結果モデルの正確性を保証する。
我々はPDP-OPがJorgensenらのパーソナライズされたプライバシー技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-01-30T16:00:14Z) - Mean Estimation Under Heterogeneous Privacy: Some Privacy Can Be Free [13.198689566654103]
本研究は,異種差分プライバシー制約に基づく平均推定の問題について考察する。
提案するアルゴリズムは,プライバシレベルが異なる2つのユーザグループが存在する場合に,ミニマックス最適であることが示されている。
論文 参考訳(メタデータ) (2023-04-27T05:23:06Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
しかし、スパースデータセットを共有するという点では、差分プライバシーがプライバシのゴールドスタンダードとして浮上している。
本研究では、スムーズな$k$匿名性(スムーズな$k$匿名性)と、スムーズな$k$匿名性(スムーズな$k$匿名性)を提供する単純な大規模アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-07-13T17:09:25Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Fully Adaptive Composition in Differential Privacy [53.01656650117495]
よく知られた高度な合成定理は、基本的なプライバシー構成が許すよりも、プライベートデータベースを2倍にクエリすることができる。
アルゴリズムとプライバシパラメータの両方を適応的に選択できる完全適応型合成を導入する。
適応的に選択されたプライバシパラメータが許されているにもかかわらず、定数を含む高度なコンポジションのレートに適合するフィルタを構築します。
論文 参考訳(メタデータ) (2022-03-10T17:03:12Z) - Location Trace Privacy Under Conditional Priors [22.970796265042246]
条件依存型データのプライバシー損失を予測する上で,R'enyi分散に基づくプライバシフレームワークを提案する。
このプライバシーを条件付きで達成するためのアルゴリズムを実証します。
論文 参考訳(メタデータ) (2021-02-23T21:55:34Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z) - Individual Privacy Accounting via a Renyi Filter [33.65665839496798]
個人ごとのパーソナライズされたプライバシ損失推定値に基づいて、より厳格なプライバシ損失会計を行う方法を提案する。
我々のフィルターは、Rogersらによる$(epsilon,delta)$-differential privacyの既知のフィルタよりもシンプルできつい。
論文 参考訳(メタデータ) (2020-08-25T17:49:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。