論文の概要: Location Trace Privacy Under Conditional Priors
- arxiv url: http://arxiv.org/abs/2102.11955v1
- Date: Tue, 23 Feb 2021 21:55:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-26 13:31:51.629792
- Title: Location Trace Privacy Under Conditional Priors
- Title(参考訳): 条件付き優先の下でのロケーショントレースプライバシ
- Authors: Casey Meehan, Kamalika Chaudhuri
- Abstract要約: 条件依存型データのプライバシー損失を予測する上で,R'enyi分散に基づくプライバシフレームワークを提案する。
このプライバシーを条件付きで達成するためのアルゴリズムを実証します。
- 参考スコア(独自算出の注目度): 22.970796265042246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Providing meaningful privacy to users of location based services is
particularly challenging when multiple locations are revealed in a short period
of time. This is primarily due to the tremendous degree of dependence that can
be anticipated between points. We propose a R\'enyi divergence based privacy
framework for bounding expected privacy loss for conditionally dependent data.
Additionally, we demonstrate an algorithm for achieving this privacy under
Gaussian process conditional priors. This framework both exemplifies why
conditionally dependent data is so challenging to protect and offers a strategy
for preserving privacy to within a fixed radius for sensitive locations in a
user's trace.
- Abstract(参考訳): ロケーションベースのサービスのユーザーに意味のあるプライバシーを提供することは、複数の場所が短期間で明らかになった場合に特に困難です。
これは主に、ポイント間で予測できる膨大な依存度によるものです。
条件依存データに対する期待されるプライバシー損失をバウンダリングするためのR'enyi分散に基づくプライバシフレームワークを提案する。
さらに,gaussian process conditional priorsにおいて,このプライバシを実現するアルゴリズムを示す。
このフレームワークは、条件付きデータを保護することが非常に難しい理由を例示し、ユーザーのトレース内の敏感な場所の固定半径内にプライバシーを維持する戦略を提供します。
関連論文リスト
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - Measuring Privacy Loss in Distributed Spatio-Temporal Data [26.891854386652266]
本稿では,情報提供者による位置復元攻撃に対する代替プライバシ損失を提案する。
実データと合成データに関する我々の実験は、分散環境での個人のプライバシー侵害に対する直感を反映していることを示している。
論文 参考訳(メタデータ) (2024-02-18T09:53:14Z) - Protecting Personalized Trajectory with Differential Privacy under Temporal Correlations [37.88484505367802]
本稿では,パーソナライズされたトラジェクトリプライバシ保護機構(PTPPM)を提案する。
ヒルベルト曲線に基づく最小距離探索アルゴリズムを用いて,各位置の保護位置集合(PLS)を同定する。
我々は位置摂動のための新しいPermute-and-Flip機構を提案し、データ公開プライバシー保護における初期応用を位置摂動機構にマッピングした。
論文 参考訳(メタデータ) (2024-01-20T12:59:08Z) - Mean Estimation Under Heterogeneous Privacy Demands [5.755004576310333]
本研究は,各ユーザが自身のプライバシレベルを設定できる平均推定の問題について考察する。
提案するアルゴリズムは,ミニマックス最適であり,ほぼ直線的な実行時間を有することを示す。
プライバシー要件が低いが異なるユーザは、すべて同じ金額で、必要以上のプライバシーを与えられる。
論文 参考訳(メタデータ) (2023-10-19T20:29:19Z) - Mean Estimation Under Heterogeneous Privacy: Some Privacy Can Be Free [13.198689566654103]
本研究は,異種差分プライバシー制約に基づく平均推定の問題について考察する。
提案するアルゴリズムは,プライバシレベルが異なる2つのユーザグループが存在する場合に,ミニマックス最適であることが示されている。
論文 参考訳(メタデータ) (2023-04-27T05:23:06Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
我々は、属性ごとのプライバシー保証を定量化できる部分微分プライバシー(DP)について検討する。
本研究では,複数の基本データ分析および学習タスクについて検討し,属性ごとのプライバシパラメータが個人全体のプライバシーパラメータよりも小さい設計アルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-09-08T22:43:50Z) - Fully Adaptive Composition in Differential Privacy [53.01656650117495]
よく知られた高度な合成定理は、基本的なプライバシー構成が許すよりも、プライベートデータベースを2倍にクエリすることができる。
アルゴリズムとプライバシパラメータの両方を適応的に選択できる完全適応型合成を導入する。
適応的に選択されたプライバシパラメータが許されているにもかかわらず、定数を含む高度なコンポジションのレートに適合するフィルタを構築します。
論文 参考訳(メタデータ) (2022-03-10T17:03:12Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T15:23:28Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。