論文の概要: Retrieval-Augmented Neural Response Generation Using Logical Reasoning
and Relevance Scoring
- arxiv url: http://arxiv.org/abs/2310.13566v1
- Date: Fri, 20 Oct 2023 15:05:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 22:25:38.170963
- Title: Retrieval-Augmented Neural Response Generation Using Logical Reasoning
and Relevance Scoring
- Title(参考訳): 論理的推論と関連スコーリングを用いた検索強化ニューラルレスポンス生成
- Authors: Nicholas Thomas Walker, Stefan Ultes, Pierre Lison
- Abstract要約: 本稿では,知識基底型応答生成に対する新しいアプローチを提案する。
検索強化された言語モデルと論理的推論を組み合わせる。
実験結果から,(確率的)論理的推論と会話関連性スコアの組合せは,応答の事実性と流布性の両方を増大させることが示された。
- 参考スコア(独自算出の注目度): 2.3590037806133024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constructing responses in task-oriented dialogue systems typically relies on
information sources such the current dialogue state or external databases. This
paper presents a novel approach to knowledge-grounded response generation that
combines retrieval-augmented language models with logical reasoning. The
approach revolves around a knowledge graph representing the current dialogue
state and background information, and proceeds in three steps. The knowledge
graph is first enriched with logically derived facts inferred using
probabilistic logical programming. A neural model is then employed at each turn
to score the conversational relevance of each node and edge of this extended
graph. Finally, the elements with highest relevance scores are converted to a
natural language form, and are integrated into the prompt for the neural
conversational model employed to generate the system response.
We investigate the benefits of the proposed approach on two datasets (KVRET
and GraphWOZ) along with a human evaluation. Experimental results show that the
combination of (probabilistic) logical reasoning with conversational relevance
scoring does increase both the factuality and fluency of the responses.
- Abstract(参考訳): タスク指向対話システムにおける応答の構成は、通常、現在の対話状態や外部データベースなどの情報ソースに依存する。
本稿では,検索型言語モデルと論理推論を組み合わせた知識基盤応答生成手法を提案する。
このアプローチは、現在の対話状態と背景情報を表す知識グラフを中心に展開し、3つのステップで進む。
知識グラフはまず確率論的論理プログラミングを用いて推論された論理的に導出された事実に富む。
次に、各ターンにニューラルモデルを用いて、この拡張グラフの各ノードとエッジの会話の関連性を評価する。
最後に、最も関連度の高い要素を自然言語形式に変換し、システム応答を生成するために使用される神経会話モデルのためのプロンプトに統合する。
本研究では,2つのデータセット(KVRETとGraphWOZ)に対する提案手法の利点と人的評価について検討する。
実験結果から,(確率的)論理的推論と会話関連性スコアの組合せは,応答の事実性と流布性の両方を増大させることが示された。
関連論文リスト
- Generative Subgraph Retrieval for Knowledge Graph-Grounded Dialog Generation [17.437568540883106]
ダイアログGSR(Generative Subgraph Retrieval)を用いたダイアログ生成を提案する。
DialogGSRは、言語モデル上にトークンシーケンスを直接生成することで、関連する知識サブグラフを取得する。
OpenDialKGとKOMODISデータセットで示されるように、知識グラフ基底ダイアログ生成における最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-10-12T03:33:42Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
現在の知識接地対話システムは、生成された応答を人間に好まれる品質に合わせるのに失敗することが多い。
我々は,世代別再描画フレームワークであるPolseed & Informed Candidate Scoring (PICK)を提案する。
対話履歴に関連性を維持しつつ,より忠実な応答を生成するためのPICKの有効性を示す。
論文 参考訳(メタデータ) (2023-09-19T08:27:09Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
コンテキスト対応グラフアテンションモデル(Context-aware GAT)を提案する。
これは、コンテキスト強化された知識集約機構を通じて、関連する知識グラフからグローバルな特徴を同化する。
実験により,本フレームワークは従来のGNNベース言語モデルよりも性能が優れていることが示された。
論文 参考訳(メタデータ) (2023-05-10T16:31:35Z) - PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chatは、知識グラフ上のポインタネットワークと、事前訓練された言語モデルを組み合わせた、ポインタネットワーク誘導生成対話モデルである。
PK-Chatが対話で生成した単語は、単語リストの予測と外部知識グラフ知識の直接予測から導かれる。
PK-Chatに基づく対話システムは、地球科学の学術シナリオ向けに構築されている。
論文 参考訳(メタデータ) (2023-04-02T18:23:13Z) - Emotion Recognition in Conversation using Probabilistic Soft Logic [17.62924003652853]
会話における感情認識(英: emotion recognition in conversation、ERC)とは、2つ以上の発話を含む会話に焦点を当てた感情認識のサブフィールドである。
我々は,宣言的テンプレート言語である確率的ソフト論理(PSL)にアプローチを実装した。
PSLは、ニューラルモデルからPSLモデルへの結果の取り込みのための機能を提供する。
提案手法を最先端の純粋ニューラルネットワークERCシステムと比較した結果,約20%の改善が得られた。
論文 参考訳(メタデータ) (2022-07-14T23:59:06Z) - Learning Reasoning Paths over Semantic Graphs for Video-grounded
Dialogues [73.04906599884868]
対話文脈(PDC)における推論経路の新しい枠組みを提案する。
PDCモデルは、各質問と回答の語彙成分に基づいて構築されたセマンティックグラフを通じて、対話間の情報フローを発見する。
本モデルでは,この推論経路を通じて視覚情報とテキスト情報を逐次的に処理し,提案する特徴を用いて回答を生成する。
論文 参考訳(メタデータ) (2021-03-01T07:39:26Z) - GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating
Open-Domain Dialogue Systems [133.13117064357425]
自動対話評価のためのグラフ強調表現のための新しい評価指標GRADEを提案する。
具体的には、対話コヒーレンスを評価するために、粗粒度発話レベルの文脈化表現と細粒度トピックレベルのグラフ表現の両方を組み込んでいる。
実験の結果,GRADEは多様な対話モデルの測定において,他の最先端の指標よりも優れていた。
論文 参考訳(メタデータ) (2020-10-08T14:07:32Z) - GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented
Dialogue Systems [9.560436630775762]
エンドツーエンドのタスク指向対話システムは,平易なテキスト入力から直接システム応答を生成することを目的としている。
1つは、外部知識ベース(KB)を学習フレームワークに効果的に組み込む方法であり、もう1つは、対話履歴のセマンティクスを正確に捉える方法である。
この2つの課題は、知識ベースと対話の依存性解析ツリーにおけるグラフ構造情報を活用することで解決される。
論文 参考訳(メタデータ) (2020-10-04T00:04:40Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
対話履歴を効果的に活用する方法は、マルチターン対話生成において重要な問題である。
これまでの研究は通常、歴史をモデル化するために様々なニューラルネットワークアーキテクチャを使用していた。
本稿では,ランキング拡張対話生成フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-13T01:49:56Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
動的テキスト環境における質問応答について検討する。
構築したグラフ上にグラフニューラルネットワークを構築し,エンドツーエンドでモデルをトレーニングする。
論文 参考訳(メタデータ) (2020-04-25T04:53:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。