論文の概要: The History and Risks of Reinforcement Learning and Human Feedback
- arxiv url: http://arxiv.org/abs/2310.13595v2
- Date: Tue, 28 Nov 2023 18:16:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 13:37:57.160140
- Title: The History and Risks of Reinforcement Learning and Human Feedback
- Title(参考訳): 強化学習の歴史とリスクと人間フィードバック
- Authors: Nathan Lambert and Thomas Krendl Gilbert and Tom Zick
- Abstract要約: 人間からのフィードバックからの強化学習(RLHF)は、大規模言語モデルをより使いやすく、より効果的にするための強力なテクニックとして登場した。
RLHFプロセスの中核は、最適化のための報酬関数として機能する人間の好みのモデルのトレーニングと利用である。
RLHF報酬モデルはしばしばパフォーマンスの達成の中心として言及されるが、能力、評価、トレーニング方法、オープンソースのモデルに関する記述はごくわずかである。
- 参考スコア(独自算出の注目度): 0.16843915833103415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning from human feedback (RLHF) has emerged as a powerful
technique to make large language models (LLMs) easier to use and more
effective. A core piece of the RLHF process is the training and utilization of
a model of human preferences that acts as a reward function for optimization.
This approach, which operates at the intersection of many stakeholders and
academic disciplines, remains poorly understood. RLHF reward models are often
cited as being central to achieving performance, yet very few descriptors of
capabilities, evaluations, training methods, or open-source models exist. Given
this lack of information, further study and transparency is needed for learned
RLHF reward models. In this paper, we illustrate the complex history of
optimizing preferences, and articulate lines of inquiry to understand the
sociotechnical context of reward models. In particular, we highlight the
ontological differences between costs, rewards, and preferences at stake in
RLHF's foundations, related methodological tensions, and possible research
directions to improve general understanding of how reward models function.
- Abstract(参考訳): 人間からのフィードバックからの強化学習(RLHF)は、大規模言語モデル(LLM)をより使いやすく、効果的にするための強力なテクニックとして登場した。
RLHFプロセスの中核は、最適化のための報酬関数として機能する人間の好みのモデルのトレーニングと利用である。
このアプローチは、多くの利害関係者と学術分野の交点で運用されているが、いまだによく分かっていない。
RLHF報酬モデルはしばしばパフォーマンスの達成の中心として言及されるが、能力、評価、トレーニング方法、オープンソースのモデルに関する記述はごくわずかである。
このような情報がないため、学習したRLHF報酬モデルにはさらなる研究と透明性が必要である。
本稿では,プライオリティを最適化する複雑な歴史と,報酬モデルの社会学的文脈を理解するための問合せの要点について述べる。
特に、RLHFの基礎におけるコスト、報酬、嗜好のオントロジ的差異、関連する方法論的緊張、および報酬モデルがどのように機能するかの一般的な理解を改善するための研究の方向性について強調する。
関連論文リスト
- Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
Reinforcement Learning from Human Feedback (RLHF)のような最先端技術は、しばしば2つの段階から構成される。
1)教師付き微調整(SFT)では,人間の実演データからモデルを微調整する。
2)選好学習では,選好データを用いて報奨モデルを学習し,そのモデルを微調整する強化学習ステップで活用する。
論文 参考訳(メタデータ) (2024-05-28T07:11:05Z) - RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs [49.386699863989335]
大きな言語モデル(LLM)を訓練し、人間の効果的なアシスタントとして機能させるには、慎重に検討する必要がある。
有望なアプローチとして、人間からのフィードバック(RLHF)からの強化学習がある。
本稿では、強化学習原理のレンズを通してRLHFを分析し、その基礎を理解する。
論文 参考訳(メタデータ) (2024-04-12T15:54:15Z) - Towards Understanding the Influence of Reward Margin on Preference Model Performance [8.891183078634786]
本研究では,人間のアノテータからの詳細なラベルを必要とせず,好みの違いを推定する新しい手法を提案する。
実験の結果,トレーニングプロセスにマージン値を組み込むことで,報酬モデルの有効性が著しく向上することを示す実証的証拠が得られた。
論文 参考訳(メタデータ) (2024-04-07T12:10:04Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
本稿では,報酬モデル評価のためのベンチマークデータセットとコードベースであるRewardBenchを紹介する。
データセットは、チャット、推論、安全性にまたがる、プロンプト・チョーゼン・リジェクトされたトリオのコレクションである。
RewardBenchのリーダーボードでは、様々な方法で訓練された報酬モデルを評価する。
論文 参考訳(メタデータ) (2024-03-20T17:49:54Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、大きな言語モデルと人間の価値を整合させる手法として広く採用されている。
しかし、RLHFは限られた量の人間の嗜好データで訓練された報酬モデルに依存している。
報奨モデルによりより正確な予測が可能となる報奨アンサンブル法を提案する。
論文 参考訳(メタデータ) (2024-01-30T00:17:37Z) - Iterative Data Smoothing: Mitigating Reward Overfitting and
Overoptimization in RLHF [79.98542868281471]
強化学習(Reinforcement Learning from Human Feedback, RLHF)は、言語モデルを人間中心の値と密接に整合させる手法である。
学習した報奨モデルに対して過度に最適化すると、最終的には真の目的が損なわれることが観察された。
本稿では、これらの問題を考察し、「Iterative Data Smoothing」(IDS)と呼ばれる改良された報酬学習アルゴリズムの設計に理論的知見を活用する。
論文 参考訳(メタデータ) (2024-01-29T17:43:42Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
本稿では,データセットにおける不正確で曖昧な嗜好の影響を軽減するために,一連の新しい手法を紹介する。
また、選択された応答と拒否された応答を区別する報酬モデルの有用性を高めるために、対照的な学習を導入する。
論文 参考訳(メタデータ) (2024-01-11T17:56:59Z) - The Alignment Ceiling: Objective Mismatch in Reinforcement Learning from
Human Feedback [5.037876196534672]
人間のフィードバックからの強化学習(RLHF)は、複雑な環境で大きな言語モデル(LLM)をより有効にするための強力な技術として登場した。
本稿では,本問題の原因を概説し,モデルに基づく強化学習から関連する文献をレビューし,解決策について議論する。
論文 参考訳(メタデータ) (2023-10-31T21:52:41Z) - SuperHF: Supervised Iterative Learning from Human Feedback [20.22920163075946]
我々は,大規模言語モデル,Supervised Fine-Tuning (SFT) とReinforcement Learning from Human Feedback (RLHF) の2つの一般的な手法に着目した。
両手法の強みを生かした新しい手法であるSupervised Iterative Learning from Human Feedback (SuperHF)を提案する。
実験の結果,SuperHF は PPO ベースの RLHF を超え,高い報酬を低報酬ハッキングで容易にかつ好意的に取り除き,下流校正を改善し,GPT-4 ベースの定性評価スキームでも同様に実施し,実装は極めて簡単であった。
論文 参考訳(メタデータ) (2023-10-25T16:52:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。