Enhancing Open-World Bacterial Raman Spectra Identification by Feature
Regularization for Improved Resilience against Unknown Classes
- URL: http://arxiv.org/abs/2310.13723v1
- Date: Thu, 19 Oct 2023 17:19:47 GMT
- Title: Enhancing Open-World Bacterial Raman Spectra Identification by Feature
Regularization for Improved Resilience against Unknown Classes
- Authors: Yaroslav Balytskyi, Nataliia Kalashnyk, Inna Hubenko, Alina Balytska,
Kelly McNear
- Abstract summary: Traditional closed-set classification approaches assume that all test samples belong to one of the known pathogens.
We demonstrate that the current state-of-the-art Neural Networks identifying pathogens through Raman spectra are vulnerable to unknown inputs.
We develop a novel ensemble of ResNet architectures combined with the attention mechanism which outperforms existing closed-world methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The combination of Deep Learning techniques and Raman spectroscopy shows
great potential offering precise and prompt identification of pathogenic
bacteria in clinical settings. However, the traditional closed-set
classification approaches assume that all test samples belong to one of the
known pathogens, and their applicability is limited since the clinical
environment is inherently unpredictable and dynamic, unknown or emerging
pathogens may not be included in the available catalogs. We demonstrate that
the current state-of-the-art Neural Networks identifying pathogens through
Raman spectra are vulnerable to unknown inputs, resulting in an uncontrollable
false positive rate. To address this issue, first, we developed a novel
ensemble of ResNet architectures combined with the attention mechanism which
outperforms existing closed-world methods, achieving an accuracy of $87.8 \pm
0.1\%$ compared to the best available model's accuracy of $86.7 \pm 0.4\%$.
Second, through the integration of feature regularization by the Objectosphere
loss function, our model achieves both high accuracy in identifying known
pathogens from the catalog and effectively separates unknown samples
drastically reducing the false positive rate. Finally, the proposed feature
regularization method during training significantly enhances the performance of
out-of-distribution detectors during the inference phase improving the
reliability of the detection of unknown classes. Our novel algorithm for Raman
spectroscopy enables the detection of unknown, uncatalogued, and emerging
pathogens providing the flexibility to adapt to future pathogens that may
emerge, and has the potential to improve the reliability of Raman-based
solutions in dynamic operating environments where accuracy is critical, such as
public safety applications.
Related papers
- Airway Labeling Meets Clinical Applications: Reflecting Topology Consistency and Outliers via Learnable Attentions [19.269806092729468]
airway anatomical labeling is crucial for clinicians to identify and navigate complex bronchial structures during bronchoscopy.
Previous methods are prone to generate inconsistent predictions.
This paper proposes a novel method that enhances topological consistency and improves the detection of abnormal airway branches.
arXiv Detail & Related papers (2024-10-31T12:04:30Z) - Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification [10.265080819932614]
This study presents an uncertainty-aware stacked neural networks model for the reliable classification of COVID-19 from radiological images.
The model addresses the critical gap in uncertainty-aware modeling by focusing on accurately identifying confidently correct predictions.
The architecture integrates uncertainty quantification methods, including Monte Carlo dropout and ensemble techniques, to enhance predictive reliability.
arXiv Detail & Related papers (2024-09-19T04:20:12Z) - Achieving Well-Informed Decision-Making in Drug Discovery: A Comprehensive Calibration Study using Neural Network-Based Structure-Activity Models [4.619907534483781]
computational models that predict drug-target interactions are valuable tools to accelerate the development of new therapeutic agents.
However, such models can be poorly calibrated, which results in unreliable uncertainty estimates.
We show that combining post hoc calibration method with well-performing uncertainty quantification approaches can boost model accuracy and calibration.
arXiv Detail & Related papers (2024-07-19T10:29:00Z) - Inadequacy of common stochastic neural networks for reliable clinical
decision support [0.4262974002462632]
Widespread adoption of AI for medical decision making is still hindered due to ethical and safety-related concerns.
Common deep learning approaches, however, have the tendency towards overconfidence under data shift.
This study investigates their actual reliability in clinical applications.
arXiv Detail & Related papers (2024-01-24T18:49:30Z) - A Saliency-based Clustering Framework for Identifying Aberrant
Predictions [49.1574468325115]
We introduce the concept of aberrant predictions, emphasizing that the nature of classification errors is as critical as their frequency.
We propose a novel, efficient training methodology aimed at both reducing the misclassification rate and discerning aberrant predictions.
We apply this methodology to the less-explored domain of veterinary radiology, where the stakes are high but have not been as extensively studied compared to human medicine.
arXiv Detail & Related papers (2023-11-11T01:53:59Z) - Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles [4.249986624493547]
Ensemble deep learning has been shown to achieve high predictive accuracy and uncertainty estimation.
perturbations in the input images at test time can still lead to significant performance degradation.
LaDiNE is a novel and robust probabilistic method that is capable of inferring informative and invariant latent variables from the input images.
arXiv Detail & Related papers (2023-10-24T15:53:07Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.