論文の概要: Fundamental Limits of Membership Inference Attacks on Machine Learning
Models
- arxiv url: http://arxiv.org/abs/2310.13786v2
- Date: Fri, 27 Oct 2023 14:09:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-30 16:24:52.808695
- Title: Fundamental Limits of Membership Inference Attacks on Machine Learning
Models
- Title(参考訳): 機械学習モデルにおけるメンバーシップ推論攻撃の基本限界
- Authors: Eric Aubinais, Elisabeth Gassiat, Pablo Piantanida
- Abstract要約: メンバーシップ推論攻撃(MIA)は、特定のデータポイントがトレーニングデータセットの一部であったかどうかを明らかにすることができる。
本稿では、機械学習モデルにおけるMIAに関連する基本的な統計的制限について考察する。
- 参考スコア(独自算出の注目度): 33.00566376951588
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Membership inference attacks (MIA) can reveal whether a particular data point
was part of the training dataset, potentially exposing sensitive information
about individuals. This article explores the fundamental statistical
limitations associated with MIAs on machine learning models. More precisely, we
first derive the statistical quantity that governs the effectiveness and
success of such attacks. Then, we investigate several situations for which we
provide bounds on this quantity of interest. This allows us to infer the
accuracy of potential attacks as a function of the number of samples and other
structural parameters of learning models, which in some cases can be directly
estimated from the dataset.
- Abstract(参考訳): メンバーシップ推論攻撃(MIA)は、特定のデータポイントがトレーニングデータセットの一部であったかどうかを明らかにすることができる。
本稿では、機械学習モデルにおけるMIAに関連する基本的な統計的制限について考察する。
より正確には、このような攻撃の有効性と成功を左右する統計量を導出する。
そこで,本研究では,この関心の量に限界を与えるいくつかの状況について検討する。
これにより、サンプル数と学習モデルの他の構造パラメータの関数として潜在的攻撃の精度を推測することが可能となり、場合によってはデータセットから直接推定することができる。
関連論文リスト
- Is Difficulty Calibration All We Need? Towards More Practical Membership Inference Attacks [16.064233621959538]
我々は,textbfRe-levertextbfA を直接 textbfRe-levertextbfA を用いて mtextbfItigate the error in textbfDifficulty calibration を提案する。
論文 参考訳(メタデータ) (2024-08-31T11:59:42Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapleyは、機械学習コンテキストにおけるデータのコントリビューションに寄与するための、原則化されたフレームワークを提供する。
既存のアプローチでは、計算集約的な異なるデータサブセット上の再学習モデルが必要である。
本稿では、対象とするデータモデルに対するスケーラブルなデータ属性を提供することにより、これらの制限に対処するIn-Run Data Shapleyを紹介する。
論文 参考訳(メタデータ) (2024-06-16T17:09:24Z) - Assessing Privacy Risks in Language Models: A Case Study on
Summarization Tasks [65.21536453075275]
我々は要約作業に焦点をあて、会員推測(MI)攻撃について調査する。
テキストの類似性や文書修正に対するモデルの抵抗をMI信号として活用する。
我々は、MI攻撃から保護するための要約モデルの訓練と、プライバシとユーティリティの本質的にのトレードオフについて議論する。
論文 参考訳(メタデータ) (2023-10-20T05:44:39Z) - Differentially Private Linear Regression with Linked Data [3.9325957466009203]
コンピュータ科学の数学的概念である差分プライバシーは、堅牢なプライバシー保証を提供する上昇するツールである。
最近の研究は、個々の統計および機械学習タスクの微分プライベートバージョンの開発に焦点を当てている。
相関データを用いた線形回帰のための2つの微分プライベートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-01T21:00:19Z) - Enhanced Membership Inference Attacks against Machine Learning Models [9.26208227402571]
メンバーシップ推論攻撃は、モデルがトレーニングセット内の個々のデータポイントについてリークする個人情報の定量化に使用される。
我々は,AUCスコアを高い精度で達成できる新たな攻撃アルゴリズムを導き,その性能に影響を及ぼすさまざまな要因を強調した。
我々のアルゴリズムは、モデルにおけるプライバシ損失の極めて正確な近似を捉え、機械学習モデルにおけるプライバシリスクの正確かつ詳細な推定を行うためのツールとして使用することができる。
論文 参考訳(メタデータ) (2021-11-18T13:31:22Z) - Formalizing and Estimating Distribution Inference Risks [11.650381752104298]
プロパティ推論攻撃の形式的および一般的な定義を提案する。
以上の結果から,安価なメタクラス化攻撃は高価なメタクラス化攻撃と同じくらい効果的であることが示唆された。
我々は、最先端のプロパティ推論攻撃を畳み込みニューラルネットワークに拡張する。
論文 参考訳(メタデータ) (2021-09-13T14:54:39Z) - Bounding Information Leakage in Machine Learning [26.64770573405079]
本稿では,情報漏洩の基本的な境界について検討する。
最悪の会員推論攻撃の成功率を特定し、拘束します。
感度の高い属性とモデルパラメータの間の相互情報の境界を導出する。
論文 参考訳(メタデータ) (2021-05-09T08:49:14Z) - Probabilistic Simplex Component Analysis [66.30587591100566]
PRISMは、データ循環記述のシンプルさの頂点をデータから識別する確率論的シンプルコンポーネント分析手法である。
この問題には多様な応用があり、最も注目すべきはリモートセンシングにおけるハイパースペクトルアンミックスと機械学習における非負行列分解である。
論文 参考訳(メタデータ) (2021-03-18T05:39:00Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。