論文の概要: GraphMaker: Can Diffusion Models Generate Large Attributed Graphs?
- arxiv url: http://arxiv.org/abs/2310.13833v3
- Date: Mon, 14 Oct 2024 18:09:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 13:59:17.760432
- Title: GraphMaker: Can Diffusion Models Generate Large Attributed Graphs?
- Title(参考訳): GraphMaker: 拡散モデルは大規模な分散グラフを生成することができるか?
- Authors: Mufei Li, Eleonora Kreačić, Vamsi K. Potluru, Pan Li,
- Abstract要約: ノード属性を持つ大規模グラフは、様々な現実世界のアプリケーションでますます一般的になっている。
従来のグラフ生成法は、これらの複雑な構造を扱う能力に制限がある。
本稿では,大きな属性グラフを生成するために特別に設計された新しい拡散モデルであるGraphMakerを紹介する。
- 参考スコア(独自算出の注目度): 7.330479039715941
- License:
- Abstract: Large-scale graphs with node attributes are increasingly common in various real-world applications. Creating synthetic, attribute-rich graphs that mirror real-world examples is crucial, especially for sharing graph data for analysis and developing learning models when original data is restricted to be shared. Traditional graph generation methods are limited in their capacity to handle these complex structures. Recent advances in diffusion models have shown potential in generating graph structures without attributes and smaller molecular graphs. However, these models face challenges in generating large attributed graphs due to the complex attribute-structure correlations and the large size of these graphs. This paper introduces a novel diffusion model, GraphMaker, specifically designed for generating large attributed graphs. We explore various combinations of node attribute and graph structure generation processes, finding that an asynchronous approach more effectively captures the intricate attribute-structure correlations. We also address scalability issues through edge mini-batching generation. To demonstrate the practicality of our approach in graph data dissemination, we introduce a new evaluation pipeline. The evaluation demonstrates that synthetic graphs generated by GraphMaker can be used to develop competitive graph machine learning models for the tasks defined over the original graphs without actually accessing these graphs, while many leading graph generation methods fall short in this evaluation.
- Abstract(参考訳): ノード属性を持つ大規模グラフは、様々な現実世界のアプリケーションでますます一般的になっている。
実世界の実例を反映した、合成的で属性に富んだグラフの作成は、特に、分析のためのグラフデータ共有と、オリジナルのデータが共有されることに制限された学習モデルの開発に不可欠である。
従来のグラフ生成法は、これらの複雑な構造を扱う能力に制限がある。
拡散モデルの最近の進歩は、属性のないグラフ構造とより小さな分子グラフを生成する可能性を示している。
しかし、これらのモデルは、複雑な属性構造相関とこれらのグラフの大きいサイズのために、大きな属性グラフを生成する際の課題に直面している。
本稿では,大きな属性グラフを生成するために特別に設計された新しい拡散モデルであるGraphMakerを紹介する。
ノード属性とグラフ構造生成プロセスの様々な組み合わせについて検討し、非同期アプローチが複雑な属性構造相関をより効果的に捉えることを発見した。
また、エッジのミニバッチ生成によるスケーラビリティの問題にも対処しています。
グラフデータの普及における我々のアプローチの実践性を実証するために,我々は新しい評価パイプラインを導入する。
この評価は、グラフMakerが生成した合成グラフを用いて、これらのグラフに実際にアクセスすることなく、元のグラフ上で定義されたタスクの競合グラフ機械学習モデルを開発することができることを示している。
関連論文リスト
- Data Augmentation in Graph Neural Networks: The Role of Generated Synthetic Graphs [0.24999074238880487]
本研究では,データ拡張のための生成グラフについて検討する。
生成したグラフを実グラフと組み合わせることのパフォーマンスを比較し、生成したグラフの量が異なることがグラフ分類タスクに与える影響を調べる。
その結果,グラフデータの拡張,一貫性のあるラベルの確保,分類性能の向上など,新たなアプローチが導入された。
論文 参考訳(メタデータ) (2024-07-20T06:05:26Z) - GraphRCG: Self-Conditioned Graph Generation [78.69810678803248]
本稿では,グラフ分布を明示的にモデル化する自己条件付きグラフ生成フレームワークを提案する。
本フレームワークは, 既存のグラフ生成手法に比べて, 学習データに対するグラフ品質と忠実度において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-02T02:28:20Z) - An Accurate Graph Generative Model with Tunable Features [0.8192907805418583]
本稿では,グラフ特徴の誤りを返送する機構を新たに追加することで,GraphTuneの精度を向上させる手法を提案する。
実世界のグラフデータセットを用いて実験したところ、生成されたグラフの特徴は従来のモデルと比較して正確に調整されていることがわかった。
論文 参考訳(メタデータ) (2023-09-03T12:34:15Z) - HiGen: Hierarchical Graph Generative Networks [2.3931689873603603]
ほとんどの実世界のグラフは階層構造を示しており、しばしば既存のグラフ生成法で見過ごされる。
本稿では,グラフの階層的な性質を捉え,グラフのサブ構造を粗い方法で連続的に生成するグラフ生成ネットワークを提案する。
このモジュラーアプローチは、大規模で複雑なグラフに対してスケーラブルなグラフ生成を可能にする。
論文 参考訳(メタデータ) (2023-05-30T18:04:12Z) - SynGraphy: Succinct Summarisation of Large Networks via Small Synthetic
Representative Graphs [4.550112751061436]
大規模ネットワークデータセットの構造を視覚的に要約するSynGraphyについて述べる。
入力グラフに類似した構造特性を持つために生成されたより小さなグラフを描画する。
論文 参考訳(メタデータ) (2023-02-15T16:00:15Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Generating a Doppelganger Graph: Resembling but Distinct [5.618335078130568]
本論文では,与えられたグラフ特性に類似したドッペルガンガーグラフを生成する手法を提案する。
このアプローチは、グラフ表現学習、生成的敵ネットワーク、およびグラフ実現アルゴリズムのオーケストレーションである。
論文 参考訳(メタデータ) (2021-01-23T22:08:27Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
本稿では,グラフ構造形成の暗黙的モデルを学ぶエンドツーエンドフレームワークを提案し,その基盤となる最適化機構を明らかにする。
学習した目的は、観測されたグラフプロパティの説明として機能し、ドメイン内の異なるグラフを渡すために自分自身を貸すことができる。
GraphOptは、グラフ内のリンク生成をシーケンシャルな意思決定プロセスとして、最大エントロピー逆強化学習アルゴリズムを用いて解決する。
論文 参考訳(メタデータ) (2020-07-07T16:51:39Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。