Solving Dicke superradiance analytically: A compendium of methods
- URL: http://arxiv.org/abs/2503.10463v3
- Date: Wed, 19 Mar 2025 07:33:05 GMT
- Title: Solving Dicke superradiance analytically: A compendium of methods
- Authors: Raphael Holzinger, Nico S. Bassler, Julian Lyne, Fidel G. Jimenez, Julius T. Gohsrich, Claudiu Genes,
- Abstract summary: We present several analytical approaches to the Dicke superradiance problem.<n>We explore multiple methods to tackle this problem, yielding a solution valid for any time and any number of spins.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present several analytical approaches to the Dicke superradiance problem, which involves determining the time evolution of the density operator for an initially inverted ensemble of $N$ identical two-level systems undergoing collective spontaneous emission. This serves as one of the simplest cases of open quantum system dynamics that allows for a fully analytical solution. We explore multiple methods to tackle this problem, yielding a solution valid for any time and any number of spins. These approaches range from solving coupled rate equations and identifying exceptional points in non-Hermitian evolution to employing combinatorial and probabilistic techniques, as well as utilizing a quantum jump unraveling of the master equation. The analytical solution is expressed as a residue sum obtained from a contour integral in the complex plane, suggesting the possibility of fully analytical solutions for a broader class of open quantum system dynamics problems.
Related papers
- Neuro-Symbolic AI for Analytical Solutions of Differential Equations [11.177091143370466]
We present an approach to find analytical solutions of differential equations using a neuro-symbolic AI framework.
This integration unifies numerical and symbolic differential equation solvers via a neuro-symbolic AI framework.
We show advantages over commercial solvers, symbolic methods, and approximate neural networks on a diverse set of problems.
arXiv Detail & Related papers (2025-02-03T16:06:56Z) - WKB Methods for Finite Difference Schrodinger Equations [0.0]
We will develop an all-order WKB algorithm to get arbitrary hbar-corrections and construct a general quantum momentum.
We will then study the simplest non trivial example, the linear potential case and the Bessel functions.
With those connection formulae, we will analyse a selection of problems, constructing the discrete spectrum of various finite difference Schrodinger problems.
arXiv Detail & Related papers (2024-10-18T17:30:10Z) - An Analysis of Quantum Annealing Algorithms for Solving the Maximum Clique Problem [49.1574468325115]
We analyse the ability of quantum D-Wave annealers to find the maximum clique on a graph, expressed as a QUBO problem.
We propose a decomposition algorithm for the complementary maximum independent set problem, and a graph generation algorithm to control the number of nodes, the number of cliques, the density, the connectivity indices and the ratio of the solution size to the number of other nodes.
arXiv Detail & Related papers (2024-06-11T04:40:05Z) - Prepotential Approach: a unified approach to exactly, quasi-exactly, and rationally extended solvable quantal systems [0.0]
We give a brief overview of a simple and unified way, called the prepotential approach.
It treats both exact and quasi-exact solvabilities of the one-dimensional Schr"odinger equation.
We illustrate the approach by several paradigmatic examples of Hermitian and non-Hermitian Hamiltonians with real energies.
arXiv Detail & Related papers (2023-10-22T11:40:00Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Unbiasing time-dependent Variational Monte Carlo by projected quantum
evolution [44.99833362998488]
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate quantum systems classically.
We prove that the most used scheme, the time-dependent Variational Monte Carlo (tVMC), is affected by a systematic statistical bias.
We show that a different scheme based on the solution of an optimization problem at each time step is free from such problems.
arXiv Detail & Related papers (2023-05-23T17:38:10Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Exact solutions for a spin-orbit coupled bosonic double-well system [5.412119592723349]
We generate analytic exact solutions for an SO-coupled boson held in a driven double well.
Results have potential applications in the preparation of accurate quantum entangled states and quantum information processing.
arXiv Detail & Related papers (2022-10-25T02:43:25Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Nonlinear Classical and Quantum Integrable Systems with PT-symmetries [0.0]
Key feature of integrable systems is that they can be solved to obtain exact analytical solutions.
We show how new models can be constructed through generalisations of some well known nonlinear partial differential equations with PT-symmetries.
We develop new methods from well-known ones to obtain exact analytical soliton solutions for these new systems.
arXiv Detail & Related papers (2022-01-01T01:50:53Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z) - Deep reinforcement learning for complex evaluation of one-loop diagrams
in quantum field theory [0.0]
We present a technique that allows for numerical analytic continuation of integrals encountered in one-loop diagrams in quantum field theory.
We train a reinforcement learning agent to perform the required contour deformations.
Our study shows great promise for an agent to be deployed in iterative numerical approaches used to compute non-perturbative 2-point functions.
arXiv Detail & Related papers (2019-12-27T19:45:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.