論文の概要: What's in a Prior? Learned Proximal Networks for Inverse Problems
- arxiv url: http://arxiv.org/abs/2310.14344v1
- Date: Sun, 22 Oct 2023 16:31:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 00:21:10.297819
- Title: What's in a Prior? Learned Proximal Networks for Inverse Problems
- Title(参考訳): 前に何があるの?
逆問題に対する学習型近位ネットワーク
- Authors: Zhenghan Fang, Sam Buchanan, Jeremias Sulam
- Abstract要約: 近似作用素は、逆問題においてユビキタスであり、通常は、そうでなければ不適切な問題を正則化するための戦略の一部として現れる。
現代のディープラーニングモデルは、プラグアンドプレイやディープアンロールのフレームワークのように、これらのタスクにも耐えられてきました。
- 参考スコア(独自算出の注目度): 11.165805069389917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Proximal operators are ubiquitous in inverse problems, commonly appearing as
part of algorithmic strategies to regularize problems that are otherwise
ill-posed. Modern deep learning models have been brought to bear for these
tasks too, as in the framework of plug-and-play or deep unrolling, where they
loosely resemble proximal operators. Yet, something essential is lost in
employing these purely data-driven approaches: there is no guarantee that a
general deep network represents the proximal operator of any function, nor is
there any characterization of the function for which the network might provide
some approximate proximal. This not only makes guaranteeing convergence of
iterative schemes challenging but, more fundamentally, complicates the analysis
of what has been learned by these networks about their training data. Herein we
provide a framework to develop learned proximal networks (LPN), prove that they
provide exact proximal operators for a data-driven nonconvex regularizer, and
show how a new training strategy, dubbed proximal matching, provably promotes
the recovery of the log-prior of the true data distribution. Such LPN provide
general, unsupervised, expressive proximal operators that can be used for
general inverse problems with convergence guarantees. We illustrate our results
in a series of cases of increasing complexity, demonstrating that these models
not only result in state-of-the-art performance, but provide a window into the
resulting priors learned from data.
- Abstract(参考訳): 近位作用素は逆問題においてユビキタスであり、一般にアルゴリズム戦略の一部として現れる。
現代のディープラーニングモデルは、プラグアンドプレイやディープアンロールのフレームワークのように、近距離演算子にゆるやかに類似したこれらのタスクにも耐えられてきた。
一般のディープネットワークが任意の関数の近位演算子を表すことは保証されておらず、ネットワークが近似した近位演算子を提供するような関数のキャラクタリゼーションも存在しない。
これは反復的スキームの収束を困難にさせるだけでなく、より根本的には、これらのネットワークが学習したトレーニングデータの分析を複雑にする。
本稿では,学習型近位ネットワーク(lpn)を開発し,データ駆動型非凸正規化器に正確な近位演算子を提供することを証明し,近位マッチングと呼ばれる新たなトレーニング戦略が真のデータ分布のログ優先の回復を促進することを示す。
そのような LPN は、収束保証付き一般逆問題に使用できる一般、教師なし、表現的近位作用素を提供する。
我々は,これらのモデルが最先端のパフォーマンスをもたらすだけでなく,データから得られた先行結果の窓口を提供することを示す。
関連論文リスト
- Simplicity bias and optimization threshold in two-layer ReLU networks [24.43739371803548]
過度なパラメータ化にもかかわらず、ネットワークはトレーニングデータを補間するのではなく、より単純な解へと収束することを示す。
我々の分析は、ニューロンが特定の方向に向かっているいわゆる早期アライメントフェーズに依存しています。
論文 参考訳(メタデータ) (2024-10-03T09:58:57Z) - Regularization, early-stopping and dreaming: a Hopfield-like setup to
address generalization and overfitting [0.0]
正規化損失関数に勾配降下を適用し,最適ネットワークパラメータを求める。
この枠組みの中で、最適なニューロン相互作用行列は、繰り返し学習プロトコルによって修正されたヘビアン核に対応する。
論文 参考訳(メタデータ) (2023-08-01T15:04:30Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Representation Equivalent Neural Operators: a Framework for Alias-free
Operator Learning [11.11883703395469]
この研究は、Representation equivalent Neural Operators (ReNO) フレームワークによるニューラル演算子に対する新たな取り組みを提供する。
中心となるのは演算子エイリアスの概念であり、これは神経演算子とその離散表現の不整合を測定する。
我々の研究結果は、異なる離散化やグリッドを扱う際にエイリアシングがエラーを発生させ、重要な連続構造が失われることについて詳述している。
論文 参考訳(メタデータ) (2023-05-31T14:45:34Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - Learning Non-Vacuous Generalization Bounds from Optimization [8.294831479902658]
最適化の観点からは、単純だが空でない一般化を示す。
我々は、勾配アルゴリズムによってアクセスされた仮説セットが本質的にフラクタル的であることを利用して、この目標を達成する。
数値解析により,現代のニューラルネットワークにおいて,本手法が有意な一般化を保証することが実証された。
論文 参考訳(メタデータ) (2022-06-09T08:59:46Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Global Optimization of Objective Functions Represented by ReLU Networks [77.55969359556032]
ニューラルネットワークは複雑で非敵対的な関数を学ぶことができ、安全クリティカルな文脈でそれらの正しい振る舞いを保証することは困難である。
ネットワーク内の障害を見つけるための多くのアプローチ(例えば、敵の例)があるが、これらは障害の欠如を保証できない。
本稿では,最適化プロセスを検証手順に統合し,本手法よりも優れた性能を実現する手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T08:19:48Z) - Learning the Travelling Salesperson Problem Requires Rethinking
Generalization [9.176056742068813]
トラベリングセールスパーソン問題(TSP)のようなグラフ最適化問題に対するニューラルネットワークソルバのエンドツーエンドトレーニングは近年,関心が高まっている。
最先端の学習駆動アプローチは、自明に小さなサイズで訓練された場合、古典的な解法と密接に関係するが、実践的な規模で学習ポリシーを大規模に一般化することはできない。
この研究は、トレーニングで見られるものよりも大きいインスタンスへの一般化を促進する、原則化されたバイアス、モデルアーキテクチャ、学習アルゴリズムを特定するために、最近の論文を統一するエンドツーエンドのニューラルネットワークパイプラインを提示している。
論文 参考訳(メタデータ) (2020-06-12T10:14:15Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
GAN(Generative Adversarial Network)の学習安定性はいまだに悩みの種である
本稿では,判別器のための関係ネットワークアーキテクチャについて検討し,より優れた一般化と安定性を実現する三重項損失を設計する。
ベンチマークデータセットの実験により、提案された関係判別器と新たな損失は、可変視覚タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-24T11:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。