A Novel Quasiparticle Method for Solid State Ion Transport
- URL: http://arxiv.org/abs/2310.14405v2
- Date: Sat, 10 Feb 2024 06:24:56 GMT
- Title: A Novel Quasiparticle Method for Solid State Ion Transport
- Authors: Jiaming Hu
- Abstract summary: The quasiparticle method has achieved a great success in solid state electronics and crystal lattice vibration.
A general recipe is put forward to map the classical solid state ion system together with the short-range ion-ion repulsion to a quasiparticle quantum system.
The derived ionic eigen-states and transport can naturally incorporate the concerted behavior.
- Score: 1.4918456025103544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quasiparticle method, which has achieved a great success in solid state
electronics and crystal lattice vibration, is adopted to study the solid state
ion transport. A general recipe is put forward to map the classical solid state
ion system together with the short-range ion-ion repulsion to a quasiparticle
quantum system based on which simple tight-binding models are set up to study
popular solid state ionic issues. The derived ionic eigen-states and transport
can naturally incorporate the concerted behavior. The influence of mobile ion
doping to ionic conductivity is investigated by an explicit mean-field
expression of ion-ion Coulomb interaction to reveal the mechanism of
super-ionic conduction. Similar trick is also applied to study the the Onsager
transport originated from ion-electron interference. The so called high-entropy
mechanism is also explored where the lattice random distorsion and multi-site
percolation exhibit positive influence to increase ionic conductivity. Our
method is expected to provide a novel framework to understand and study the
solid state ion transport.
Related papers
- Strong coherent ion-electron coupling using a wire data bus [0.0]
We propose a wire-mediated scheme for coherent ion-electron coupling.
The work paves a way toward quantum information processing in ion-electron hybrid quantum systems.
arXiv Detail & Related papers (2024-07-29T14:43:57Z) - Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - Adiabatically controlled motional states of a ground-state cooled
CaO$^{+}$ and Ca$^{+}$ trapped ion chain [6.1524835590475]
Control of the external degree of freedom of trapped molecular ions is a prerequisite for their promising applications to spectroscopy, precision measurements of fundamental constants, and quantum information technology.
We demonstrate near ground-state cooling of the axial motional modes of a calcium mono-oxide ion via sympathetic sideband cooling with a co-trapped calcium ion.
arXiv Detail & Related papers (2022-12-09T20:07:01Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Near-Surface Electrical Characterisation of Silicon Electronic Devices
Using Focused keV Ions [45.82374977939355]
We show how to implant low-energy ions into silicon devices featuring an enlarged 60x60 $mu$m sensitive area.
Despite the weak internal electric field, near-unity charge collection efficiency is obtained from the entire sensitive area.
This can be explained by the critical role that the high-quality thermal gate oxide plays in the ion detection response.
arXiv Detail & Related papers (2022-01-27T06:29:46Z) - Thermally induced entanglement of atomic oscillators [0.0]
Laser cooled ions trapped in a linear Paul trap are long-standing ideal candidates for realizing quantum simulation.
A pair of ions interacting in such traps exchange vibrational quanta through the Coulomb interaction.
Driven by thermal energy, the nonlinear interaction autonomously and unconditionally generates entanglement between the mechanical modes of the ions.
arXiv Detail & Related papers (2021-07-05T11:15:06Z) - Evaluating states in trapped ions with local correlation between
internal and motional degrees of freedom [0.0]
We propose and demonstrate a scalable scheme for the simultaneous determination of internal and motional states in trapped ions with single-site resolution.
The scheme is applied to the study of polaritonic excitations in the Jaynes- Cummings Hubbard model with trapped ions.
arXiv Detail & Related papers (2021-05-11T03:48:35Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Spectral properties of a three body atom-ion hybrid system [0.0]
We consider a hybrid atom-ion system consisting of a pair of bosons interacting with a single ion in a quasi-one-dimensional trapping geometry.
Building upon a model potential for the atom-ion interaction developed in earlier theoretical works, we investigate the behaviour of the low-energy eigenstates.
arXiv Detail & Related papers (2021-01-21T16:52:37Z) - Trapping, Shaping and Isolating of Ion Coulomb Crystals via
State-selective Optical Potentials [55.41644538483948]
In conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent on their charge-to-mass ratio $Q/m$.
Here we experimentally study optical dipole potentials for $138mathrmBa+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm.
arXiv Detail & Related papers (2020-10-26T14:36:48Z) - Ancilla mediated qubit readout and heralded entanglement between
rare-earth dopant ions in crystals [68.8204255655161]
We show how a Bayesian analysis exhausts the information about the state of the qubit from the optical signal of the ancilla ion.
We extend the architecture to ions residing in two remote cavities, and we show how continuous monitoring of fluorescence signals from the two ancilla ions leads to entanglement of the qubit ions.
arXiv Detail & Related papers (2020-07-06T16:31:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.