論文の概要: Retrieval-Augmented Chain-of-Thought in Semi-structured Domains
- arxiv url: http://arxiv.org/abs/2310.14435v1
- Date: Sun, 22 Oct 2023 22:45:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 23:40:09.091285
- Title: Retrieval-Augmented Chain-of-Thought in Semi-structured Domains
- Title(参考訳): 半構造ドメインにおける検索付加鎖
- Authors: Vaibhav Mavi and Abulhair Saparov and Chen Zhao
- Abstract要約: 大規模言語モデル(LLM)は、印象的な言語理解とコンテキスト内学習能力を示している。
本研究は,法的・財務的データの半構造化特性を活用し,関連文脈を効率的に検索することを目的とする。
結果として得られるシステムは、現代のモデルよりも優れており、また、回答に有用な説明を提供する。
- 参考スコア(独自算出の注目度): 10.417698947670564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Applying existing question answering (QA) systems to specialized domains like
law and finance presents challenges that necessitate domain expertise. Although
large language models (LLMs) have shown impressive language comprehension and
in-context learning capabilities, their inability to handle very long
inputs/contexts is well known. Tasks specific to these domains need significant
background knowledge, leading to contexts that can often exceed the maximum
length that existing LLMs can process. This study explores leveraging the
semi-structured nature of legal and financial data to efficiently retrieve
relevant context, enabling the use of LLMs for domain-specialized QA. The
resulting system outperforms contemporary models and also provides useful
explanations for the answers, encouraging the integration of LLMs into legal
and financial NLP systems for future research.
- Abstract(参考訳): 既存の質問応答(QA)システムを法律や財務といった専門分野に適用することは、ドメインの専門知識を必要とする課題を提示します。
大規模言語モデル(llm)は印象的な言語理解と文脈内学習能力を示しているが、非常に長い入力/コンテキストを扱うことができないことはよく知られている。
これらの領域に固有のタスクは、大きなバックグラウンド知識を必要とするため、既存のLLMが処理できる最大長を超える場合が多い。
本研究は,法律および財務データの半構造化特性を活用し,関連文脈を効率的に検索し,ドメイン特化QAにおけるLLMの利用を可能にすることを目的とする。
結果として得られたシステムは、現代のモデルよりも優れており、また、今後の研究のためにLLMを法的および財政的なNLPシステムに統合することを奨励している。
関連論文リスト
- A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness [31.758459020683574]
小言語モデル(SLM)は、低推論のレイテンシ、コスト効率性、効率的な開発、カスタマイズと適応性に対して、ますます好まれています。
これらのモデルは、リソース制限された環境とドメイン知識の獲得に特に適しています。
資源制約のある設定に特化タスクと適合性を持たせる能力によってSLMを定義することを提案する。
論文 参考訳(メタデータ) (2024-11-04T04:43:01Z) - Exploring Language Model Generalization in Low-Resource Extractive QA [57.14068405860034]
ドメインドリフト下でのLarge Language Models (LLM) を用いた抽出質問応答(EQA)について検討する。
パフォーマンスギャップを実証的に説明するための一連の実験を考案する。
論文 参考訳(メタデータ) (2024-09-27T05:06:43Z) - Financial Knowledge Large Language Model [4.599537455808687]
大規模言語モデル(LLM)の財務知識を評価するための評価ベンチマークであるIDEA-FinBenchを紹介する。
金融分野への一般LLMの迅速な適応を容易にするためのフレームワークであるIDEA-FinKERを提案する。
最後に LLM を利用した財務質問応答システム IDEA-FinQA を提案する。
論文 参考訳(メタデータ) (2024-06-29T08:26:49Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
大規模言語モデル(LLM)は、言語理解および生成タスクにおいて顕著なパフォーマンスを達成した。
ビジネスプロセスにおけるLCMの有用性と準備性について概説する。
論文 参考訳(メタデータ) (2024-06-09T02:36:00Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Fine-tuning and Utilization Methods of Domain-specific LLMs [0.0]
本研究では,ドメイン固有LLMの微調整と活用のアプローチについて検討する。
データセットの選択、前処理、モデルの選択、金融におけるLLMの微調整に不可欠な考慮について詳述する。
本研究は、金融分野におけるLLMの可能性を探り、限界を特定し、改善の方向性を提案する。
論文 参考訳(メタデータ) (2024-01-01T06:22:04Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野を著しく進歩させた。
広範囲のアプリケーションに対して、非常に有用でタスクに依存しない基盤を提供する。
しかし、特定の領域における洗練された問題を解決するために直接LLMを適用することは、多くのハードルを満たす。
論文 参考訳(メタデータ) (2023-05-30T03:00:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。