論文の概要: Intelligent Escape of Robotic Systems: A Survey of Methodologies,
Applications, and Challenges
- arxiv url: http://arxiv.org/abs/2310.14485v1
- Date: Mon, 23 Oct 2023 01:34:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 23:20:28.686951
- Title: Intelligent Escape of Robotic Systems: A Survey of Methodologies,
Applications, and Challenges
- Title(参考訳): ロボットシステムのインテリジェントエスケープ:方法論,応用,課題に関する調査
- Authors: Junfei Li, Simon X. Yang
- Abstract要約: Intelligent escapeは人工知能(AI)技術を用いて、ロボットが潜在的な危険に対してインテリジェントに反応できるようにする。
知的脱出の4つの主要な方法は,計画に基づく方法論,分割に基づく方法論,学習に基づく方法論,生物に触発された方法論である。
知的避難の潜在的な応用は、捜索・救助、避難、軍事セキュリティ、医療など様々な領域で議論されている。
- 参考スコア(独自算出の注目度): 5.478000072204037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intelligent escape is an interdisciplinary field that employs artificial
intelligence (AI) techniques to enable robots with the capacity to
intelligently react to potential dangers in dynamic, intricate, and
unpredictable scenarios. As the emphasis on safety becomes increasingly
paramount and advancements in robotic technologies continue to advance, a wide
range of intelligent escape methodologies has been developed in recent years.
This paper presents a comprehensive survey of state-of-the-art research work on
intelligent escape of robotic systems. Four main methods of intelligent escape
are reviewed, including planning-based methodologies, partitioning-based
methodologies, learning-based methodologies, and bio-inspired methodologies.
The strengths and limitations of existing methods are summarized. In addition,
potential applications of intelligent escape are discussed in various domains,
such as search and rescue, evacuation, military security, and healthcare. In an
effort to develop new approaches to intelligent escape, this survey identifies
current research challenges and provides insights into future research trends
in intelligent escape.
- Abstract(参考訳): インテリジェント・エスケープ(英: Intelligent escape)は、人工知能(AI)技術を用いて、ダイナミックで複雑な、予測不可能なシナリオにおける潜在的な危険にインテリジェントに対応できるようにする分野である。
安全への重点がますます重要になり、ロボット技術の進歩が進み続ける中、近年は多様なインテリジェントエスケープ方法論が開発されている。
本稿では,ロボットシステムの知的脱出に関する最新の研究成果を包括的に調査する。
知的脱出の4つの主要な方法は,計画に基づく方法論,分割に基づく方法論,学習に基づく方法論,生物に触発された方法論である。
既存の手法の強みと限界を要約する。
さらに, 捜索救助, 避難, 軍事安全, 医療など様々な分野において, インテリジェント・エスケープの潜在的な応用について論じる。
インテリジェントエスケープの新しいアプローチを開発するために、この調査は現在の研究課題を特定し、インテリジェントエスケープの今後の研究動向に関する洞察を提供する。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - A Comprehensive Survey on the Security of Smart Grid: Challenges, Mitigations, and Future Research Opportunities [4.589028594967462]
本稿では,スマートグリッドの高度なコンポーネントによって導入された新たな攻撃面に着目し,様々な攻撃ベクトルの詳細な解析を行う。
次に,ゲーム理論,グラフ理論,機械学習など,革新的な検出・緩和戦略を検討する。
まず,既存戦略と新興戦略の研究機会について考察し,新たな技術の可能性を探る。
論文 参考訳(メタデータ) (2024-07-10T18:03:24Z) - Open-world Machine Learning: A Review and New Outlooks [83.6401132743407]
本稿では,新たなオープンワールド機械学習パラダイムを包括的に紹介することを目的としている。
研究者がそれぞれの分野でより強力なAIシステムを構築するのを支援し、人工知能の開発を促進することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T06:25:26Z) - Non-equilibrium physics: from spin glasses to machine and neural
learning [0.0]
障害のある多体系は様々なスケールで幅広い創発現象を示す。
我々は、統計物理学を通して、乱れたシステムにおけるそのような突発的な知性を特徴付けることを目指している。
知的システムを設計するための指針となる学習メカニズムと物理力学の関係を明らかにする。
論文 参考訳(メタデータ) (2023-08-03T04:56:47Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z) - From SLAM to Situational Awareness: Challenges and Survey [0.0]
複雑なミッションを効率的に安全に遂行する移動ロボットの能力は、環境に関する知識によって制限される。
高度な推論、意思決定、実行スキルにより、知的エージェントは未知の環境で自律的に行動することができる。
本稿では,現状のロボット工学アルゴリズムを網羅し,状況認識の諸側面について考察する。
論文 参考訳(メタデータ) (2021-10-01T09:00:34Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Bringing AI To Edge: From Deep Learning's Perspective [7.308396023489246]
エッジコンピューティングと人工知能(AI)は、エッジインテリジェンスと呼ばれる新しいシステムを構築するために徐々に交差している。
これらの課題の1つは、計算集約的なディープラーニングアルゴリズムと、計算能力の低いエッジシステムの間のテキスト計算のギャップである。
本稿では,エッジインテリジェンスシステムに有用な代表的かつ最新のディープラーニング技術について調査する。
論文 参考訳(メタデータ) (2020-11-25T12:07:21Z) - A Review of Uncertainty Quantification in Deep Learning: Techniques,
Applications and Challenges [76.20963684020145]
不確実性定量化(UQ)は、最適化と意思決定プロセスの両方において不確実性の低減に重要な役割を果たしている。
ビザレ近似とアンサンブル学習技術は、文学において最も広く使われている2つのUQ手法である。
本研究は, 深層学習におけるUQ手法の最近の進歩を概観し, 強化学習におけるこれらの手法の適用について検討する。
論文 参考訳(メタデータ) (2020-11-12T06:41:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。