A Human-on-the-Loop Optimization Autoformalism Approach for
Sustainability
- URL: http://arxiv.org/abs/2308.10380v2
- Date: Wed, 23 Aug 2023 00:52:13 GMT
- Title: A Human-on-the-Loop Optimization Autoformalism Approach for
Sustainability
- Authors: Ming Jin, Bilgehan Sel, Fnu Hardeep, Wotao Yin
- Abstract summary: This paper outlines a natural conversational approach to solving personalized energy-related problems using large language models (LLMs)
We put forward a strategy that augments an LLM with an optimization solver, enhancing its proficiency in understanding and responding to user specifications and preferences.
Our approach pioneers the novel concept of human-guided optimization autoformalism, translating a natural language task specification automatically into an optimization instance.
- Score: 27.70596933019959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper outlines a natural conversational approach to solving personalized
energy-related problems using large language models (LLMs). We focus on
customizable optimization problems that necessitate repeated solving with
slight variations in modeling and are user-specific, hence posing a challenge
to devising a one-size-fits-all model. We put forward a strategy that augments
an LLM with an optimization solver, enhancing its proficiency in understanding
and responding to user specifications and preferences while providing nonlinear
reasoning capabilities. Our approach pioneers the novel concept of human-guided
optimization autoformalism, translating a natural language task specification
automatically into an optimization instance. This enables LLMs to analyze,
explain, and tackle a variety of instance-specific energy-related problems,
pushing beyond the limits of current prompt-based techniques.
Our research encompasses various commonplace tasks in the energy sector, from
electric vehicle charging and Heating, Ventilation, and Air Conditioning (HVAC)
control to long-term planning problems such as cost-benefit evaluations for
installing rooftop solar photovoltaics (PVs) or heat pumps. This pilot study
marks an essential stride towards the context-based formulation of optimization
using LLMs, with the potential to democratize optimization processes. As a
result, stakeholders are empowered to optimize their energy consumption,
promoting sustainable energy practices customized to personal needs and
preferences.
Related papers
- Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - AI-Driven Approaches for Optimizing Power Consumption: A Comprehensive Survey [0.0]
Reduced environmental effect, lower operating costs, and a stable and sustainable energy supply are the main reasons why power optimization is important.
Power optimization and artificial intelligence (AI) integration are essential to changing the way energy is produced, used, and distributed.
Real-time monitoring and analysis of power usage trends is made possible by AI-driven algorithms and predictive analytics.
arXiv Detail & Related papers (2024-06-22T04:42:37Z) - Large Language Model-Based Evolutionary Optimizer: Reasoning with
elitism [1.1463861912335864]
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities.
This paper asserts that LLMs possess the capability for zero-shot optimization across diverse scenarios.
We introduce a novel population-based method for numerical optimization using LLMs.
arXiv Detail & Related papers (2024-03-04T13:57:37Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Interpretable Deep Reinforcement Learning for Optimizing Heterogeneous
Energy Storage Systems [11.03157076666012]
Energy storage systems (ESS) are pivotal component in the energy market, serving as both energy suppliers and consumers.
To enhance ESS flexibility within the energy market, a heterogeneous photovoltaic-ESS (PV-ESS) is proposed.
We develop a comprehensive cost function that takes into account degradation, capital, and operation/maintenance costs to reflect real-world scenarios.
arXiv Detail & Related papers (2023-10-20T02:26:17Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Comparison and Evaluation of Methods for a Predict+Optimize Problem in
Renewable Energy [42.00952788334554]
This paper presents the findings of the IEEE-CIS Technical Challenge on Predict+ for Renewable Energy Scheduling," held in 2021.
We present a comparison and evaluation of the seven highest-ranked solutions in the competition.
The winning method predicted different scenarios and optimized over all scenarios using a sample average approximation method.
arXiv Detail & Related papers (2022-12-21T02:34:12Z) - Learning Implicit Priors for Motion Optimization [105.11889448885226]
Energy-based Models (EBM) represent expressive probability density distributions.
We present a set of required modeling and algorithmic choices to adapt EBMs into motion optimization.
arXiv Detail & Related papers (2022-04-11T19:14:54Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives.
In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions.
This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems.
arXiv Detail & Related papers (2021-11-04T20:18:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.