Predict+Optimize Problem in Renewable Energy Scheduling
- URL: http://arxiv.org/abs/2212.10723v2
- Date: Mon, 14 Apr 2025 15:09:10 GMT
- Title: Predict+Optimize Problem in Renewable Energy Scheduling
- Authors: Christoph Bergmeir, Frits de Nijs, Evgenii Genov, Abishek Sriramulu, Mahdi Abolghasemi, Richard Bean, John Betts, Quang Bui, Nam Trong Dinh, Nils Einecke, Rasul Esmaeilbeigi, Scott Ferraro, Priya Galketiya, Robert Glasgow, Rakshitha Godahewa, Yanfei Kang, Steffen Limmer, Luis Magdalena, Pablo Montero-Manso, Daniel Peralta, Yogesh Pipada Sunil Kumar, Alejandro Rosales-Pérez, Julian Ruddick, Akylas Stratigakos, Peter Stuckey, Guido Tack, Isaac Triguero, Rui Yuan,
- Abstract summary: This paper benchmarks solutions from the IEEE-CIS Technical Challenge on Predict+ for Renewable Energy Scheduling.<n>The top-ranked method employed optimization using LightGBM ensembles achieved at least a 2% reduction in energy costs.<n>The novelty of this work lies in its comprehensive evaluation of Predict+ methodologies applied to a real-world renewable energy scheduling problem.
- Score: 31.032838966665828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predict+Optimize frameworks integrate forecasting and optimization to address real-world challenges such as renewable energy scheduling, where variability and uncertainty are critical factors. This paper benchmarks solutions from the IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling, focusing on forecasting renewable production and demand and optimizing energy cost. The competition attracted 49 participants in total. The top-ranked method employed stochastic optimization using LightGBM ensembles, and achieved at least a 2% reduction in energy costs compared to deterministic approaches, demonstrating that the most accurate point forecast does not necessarily guarantee the best performance in downstream optimization. The published data and problem setting establish a benchmark for further research into integrated forecasting-optimization methods for energy systems, highlighting the importance of considering forecast uncertainty in optimization models to achieve cost-effective and reliable energy management. The novelty of this work lies in its comprehensive evaluation of Predict+Optimize methodologies applied to a real-world renewable energy scheduling problem, providing insights into the scalability, generalizability, and effectiveness of the proposed solutions. Potential applications extend beyond energy systems to any domain requiring integrated forecasting and optimization, such as supply chain management, transportation planning, and financial portfolio optimization.
Related papers
- Global-Decision-Focused Neural ODEs for Proactive Grid Resilience Management [50.34345101758248]
We propose predict-all-then-optimize-globally (PATOG), a framework that integrates outage prediction with globally optimized interventions.
Our approach ensures spatially and temporally coherent decision-making, improving both predictive accuracy and operational efficiency.
Experiments on synthetic and real-world datasets demonstrate significant improvements in outage prediction consistency and grid resilience.
arXiv Detail & Related papers (2025-02-25T16:15:35Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Balancing Forecast Accuracy and Switching Costs in Online Optimization of Energy Management Systems [3.3295510777293837]
This study investigates the integration of forecasting and optimization in energy management systems.
We develop a theoretical and empirical framework to examine how forecast accuracy and stability interact with switching costs.
arXiv Detail & Related papers (2024-06-29T12:28:30Z) - Energy-Efficient Scheduling with Predictions [4.662349748983561]
In energy-efficient scheduling, the operating system controls the speed at which a machine is processing jobs.
Recent work on learning-augmented algorithms aims to achieve improved performance guarantees by leveraging predictions.
We provide a flexible learning-augmented algorithmic framework that takes as input an offline and an online algorithm for the desired energy-efficient scheduling problem.
arXiv Detail & Related papers (2024-02-27T02:13:32Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Learning-assisted Stochastic Capacity Expansion Planning: A Bayesian Optimization Approach [3.124884279860061]
Large-scale capacity expansion problems (CEPs) are central to costeffective decarbonization of regional energy systems.
Here, we propose a learning-assisted approximate solution method to tractably solve two-stage CEPs.
We show that our approach yields an estimated cost savings of up to 3.8% in comparison to series aggregation approaches.
arXiv Detail & Related papers (2024-01-19T01:40:58Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
Predictive optimization is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising.
We develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for advertising.
Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO.
arXiv Detail & Related papers (2023-11-13T13:19:34Z) - A Human-on-the-Loop Optimization Autoformalism Approach for
Sustainability [27.70596933019959]
This paper outlines a natural conversational approach to solving personalized energy-related problems using large language models (LLMs)
We put forward a strategy that augments an LLM with an optimization solver, enhancing its proficiency in understanding and responding to user specifications and preferences.
Our approach pioneers the novel concept of human-guided optimization autoformalism, translating a natural language task specification automatically into an optimization instance.
arXiv Detail & Related papers (2023-08-20T22:42:04Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - How to predict and optimise with asymmetric error metrics [0.0]
We examine the concept of the predict and optimise problem with specific reference to the third Technical Challenge of the IEEE Computational Intelligence Society.
In this competition, entrants were asked to forecast building energy use and solar generation at six buildings and six solar installations, and then use their forecast to optimize energy cost while scheduling classes and batteries over a month.
We explore the different nature of loss functions for the prediction and optimisation phase and propose to adjust the final forecasts for a better optimisation cost.
arXiv Detail & Related papers (2022-11-24T13:16:45Z) - Optimal activity and battery scheduling algorithm using load and solar
generation forecasts [0.0]
The 5textsuperscriptth IEEE Computational Intelligence Society (IEEE-CIS) competition raised a practical problem of decreasing the electricity bill by scheduling building activities.
We propose a technical sequence for tackling the solar PV and demand forecast and optimal scheduling problems, where solar generation prediction methods and an optimal university lectures scheduling algorithm are proposed.
arXiv Detail & Related papers (2022-10-24T07:26:21Z) - Movement Penalized Bayesian Optimization with Application to Wind Energy
Systems [84.7485307269572]
Contextual Bayesian optimization (CBO) is a powerful framework for sequential decision-making given side information.
In this setting, the learner receives context (e.g., weather conditions) at each round, and has to choose an action (e.g., turbine parameters)
Standard algorithms assume no cost for switching their decisions at every round, but in many practical applications, there is a cost associated with such changes, which should be minimized.
arXiv Detail & Related papers (2022-10-14T20:19:32Z) - Learning Implicit Priors for Motion Optimization [105.11889448885226]
Energy-based Models (EBM) represent expressive probability density distributions.
We present a set of required modeling and algorithmic choices to adapt EBMs into motion optimization.
arXiv Detail & Related papers (2022-04-11T19:14:54Z) - Evolutionary scheduling of university activities based on consumption
forecasts to minimise electricity costs [0.9449650062296824]
This paper presents a solution to a predict then optimise problem which goal is to reduce the electricity cost of a university campus.
The proposed methodology combines a multi-dimensional time series forecast and a novel approach to large-scale optimization.
arXiv Detail & Related papers (2022-02-25T10:18:56Z) - Learning Optimization Proxies for Large-Scale Security-Constrained
Economic Dispatch [11.475805963049808]
Security-Constrained Economic Dispatch (SCED) is a fundamental optimization model for Transmission System Operators (TSO)
This paper proposes to learn an optimization proxy for SCED, i.e., a Machine Learning (ML) model that can predict an optimal solution for SCED in milliseconds.
Numerical experiments are reported on the French transmission system, and demonstrate the approach's ability to produce, within a time frame that is compatible with real-time operations.
arXiv Detail & Related papers (2021-12-27T00:44:06Z) - Stochastic Optimization Forests [60.523606291705214]
We show how to train forest decision policies by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm.
We show that our approximate splitting criteria can reduce running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize for every candidate split.
arXiv Detail & Related papers (2020-08-17T16:56:06Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
This paper studies how to apply differential privacy to constrained optimization problems whose inputs are sensitive.
The paper shows that, under a natural assumption, a bilevel model can be solved efficiently for large-scale nonlinear optimization problems.
arXiv Detail & Related papers (2020-01-26T20:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.