Dual-path convolutional neural network using micro-FTIR imaging to
predict breast cancer subtypes and biomarkers levels: estrogen receptor,
progesterone receptor, HER2 and Ki67
- URL: http://arxiv.org/abs/2310.15099v1
- Date: Mon, 23 Oct 2023 17:05:53 GMT
- Title: Dual-path convolutional neural network using micro-FTIR imaging to
predict breast cancer subtypes and biomarkers levels: estrogen receptor,
progesterone receptor, HER2 and Ki67
- Authors: Matheus del-Valle, Emerson Soares Bernardes, Denise Maria Zezell
- Abstract summary: CaReNet-V2, a novel convolutional neural network, was developed to classify breast cancer vs adjacent tissue and to predict biomarkers level.
The model enabled the prediction of ER, PR, and HER2 levels, where borderline values showed lower performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer molecular subtypes classification plays an import role to sort
patients with divergent prognosis. The biomarkers used are Estrogen Receptor
(ER), Progesterone Receptor (PR), HER2, and Ki67. Based on these biomarkers
expression levels, subtypes are classified as Luminal A (LA), Luminal B (LB),
HER2 subtype, and Triple-Negative Breast Cancer (TNBC). Immunohistochemistry is
used to classify subtypes, although interlaboratory and interobserver
variations can affect its accuracy, besides being a time-consuming technique.
The Fourier transform infrared micro-spectroscopy may be coupled with deep
learning for cancer evaluation, where there is still a lack of studies for
subtypes and biomarker levels prediction. This study presents a novel 2D deep
learning approach to achieve these predictions. Sixty micro-FTIR images of
320x320 pixels were collected from a human breast biopsies microarray. Data
were clustered by K-means, preprocessed and 32x32 patches were generated using
a fully automated approach. CaReNet-V2, a novel convolutional neural network,
was developed to classify breast cancer (CA) vs adjacent tissue (AT) and
molecular subtypes, and to predict biomarkers level. The clustering method
enabled to remove non-tissue pixels. Test accuracies for CA vs AT and subtype
were above 0.84. The model enabled the prediction of ER, PR, and HER2 levels,
where borderline values showed lower performance (minimum accuracy of 0.54).
Ki67 percentage regression demonstrated a mean error of 3.6%. Thus, CaReNet-V2
is a potential technique for breast cancer biopsies evaluation, standing out as
a screening analysis technique and helping to prioritize patients.
Related papers
- Development and Validation of Fully Automatic Deep Learning-Based Algorithms for Immunohistochemistry Reporting of Invasive Breast Ductal Carcinoma [5.572436001833252]
We present, a deep learning-based semi-supervised trained, fully automatic, decision support system (DSS) for IHC scoring of ductal carcinoma.
Our system automatically detects the tumor region removing artifacts and scores based on Allred standard.
achieved agreements of 95, 92, 88 and 82 percent for Ki67, HER2, ER, and PR stain categories.
arXiv Detail & Related papers (2024-06-16T10:52:38Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Improving Performance in Colorectal Cancer Histology Decomposition using Deep and Ensemble Machine Learning [0.7082642128219231]
Histologic samples stained with hematoxylin and eosin are commonly used in colorectal cancer management.
Recent research highlights the potential of convolutional neural networks (CNNs) in facilitating the extraction of clinically relevant biomarkers from readily available images.
CNN-based biomarkers can predict patient outcomes comparably to golden standards, with the added advantages of speed, automation, and minimal cost.
arXiv Detail & Related papers (2023-10-25T19:46:27Z) - One-dimensional convolutional neural network model for breast cancer
subtypes classification and biochemical content evaluation using micro-FTIR
hyperspectral images [0.0]
This study created a 1D deep learning tool for breast cancer subtype evaluation and biochemical contribution.
CaReNet-V1, a novel 1D convolutional neural network, was developed to classify breast cancer (CA) and adjacent tissue (AT)
A 1D adaptation of Grad-CAM was applied to assess the biochemical impact to the classifications.
arXiv Detail & Related papers (2023-10-23T16:58:34Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - hist2RNA: An efficient deep learning architecture to predict gene
expression from breast cancer histopathology images [11.822321981275232]
Deep learning algorithms can effectively extract morphological patterns in digital histopathology images to predict molecular phenotypes quickly and cost-effectively.
We propose a new, computationally efficient approach called hist2RNA inspired by bulk RNA-sequencing techniques to predict the expression of 138 genes.
arXiv Detail & Related papers (2023-04-10T10:54:32Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Deep Learning Based Model for Breast Cancer Subtype Classification [3.419451872918847]
This paper focuses on the use of gene expression data for the classification of breast cancer into four subtypes, Basal, Her2, LumA, and LumB.
The size of the feature set is reduced from 20,530 gene expression values to 500 by using an autoencoder.
By deploying the combined network of stages 1 and 2, we have been able to attain a mean 10-fold test accuracy of 0.907 on the TCGA breast cancer dataset.
arXiv Detail & Related papers (2021-11-06T17:15:35Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.