Development and Validation of Fully Automatic Deep Learning-Based Algorithms for Immunohistochemistry Reporting of Invasive Breast Ductal Carcinoma
- URL: http://arxiv.org/abs/2406.10893v1
- Date: Sun, 16 Jun 2024 10:52:38 GMT
- Title: Development and Validation of Fully Automatic Deep Learning-Based Algorithms for Immunohistochemistry Reporting of Invasive Breast Ductal Carcinoma
- Authors: Sumit Kumar Jha, Purnendu Mishra, Shubham Mathur, Gursewak Singh, Rajiv Kumar, Kiran Aatre, Suraj Rengarajan,
- Abstract summary: We present, a deep learning-based semi-supervised trained, fully automatic, decision support system (DSS) for IHC scoring of ductal carcinoma.
Our system automatically detects the tumor region removing artifacts and scores based on Allred standard.
achieved agreements of 95, 92, 88 and 82 percent for Ki67, HER2, ER, and PR stain categories.
- Score: 5.572436001833252
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Immunohistochemistry (IHC) analysis is a well-accepted and widely used method for molecular subtyping, a procedure for prognosis and targeted therapy of breast carcinoma, the most common type of tumor affecting women. There are four molecular biomarkers namely progesterone receptor (PR), estrogen receptor (ER), antigen Ki67, and human epidermal growth factor receptor 2 (HER2) whose assessment is needed under IHC procedure to decide prognosis as well as predictors of response to therapy. However, IHC scoring is based on subjective microscopic examination of tumor morphology and suffers from poor reproducibility, high subjectivity, and often incorrect scoring in low-score cases. In this paper, we present, a deep learning-based semi-supervised trained, fully automatic, decision support system (DSS) for IHC scoring of invasive ductal carcinoma. Our system automatically detects the tumor region removing artifacts and scores based on Allred standard. The system is developed using 3 million pathologist-annotated image patches from 300 slides, fifty thousand in-house cell annotations, and forty thousand pixels marking of HER2 membrane. We have conducted multicentric trials at four centers with three different types of digital scanners in terms of percentage agreement with doctors. And achieved agreements of 95, 92, 88 and 82 percent for Ki67, HER2, ER, and PR stain categories, respectively. In addition to overall accuracy, we found that there is 5 percent of cases where pathologist have changed their score in favor of algorithm score while reviewing with detailed algorithmic analysis. Our approach could improve the accuracy of IHC scoring and subsequent therapy decisions, particularly where specialist expertise is unavailable. Our system is highly modular. The proposed algorithm modules can be used to develop DSS for other cancer types.
Related papers
- AI-assisted prostate cancer detection and localisation on biparametric MR by classifying radiologist-positives [5.75804178993065]
We propose to develop deep learning models that improve the overall cancer diagnostic accuracy.
We develop a single voxel-level classification model, with a simple percentage threshold to determine positive cases.
Based on the presented experiments from two clinical data sets, we show that the proposed strategy can improve the diagnostic accuracy.
arXiv Detail & Related papers (2024-10-30T14:59:57Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Dual-path convolutional neural network using micro-FTIR imaging to
predict breast cancer subtypes and biomarkers levels: estrogen receptor,
progesterone receptor, HER2 and Ki67 [0.0]
CaReNet-V2, a novel convolutional neural network, was developed to classify breast cancer vs adjacent tissue and to predict biomarkers level.
The model enabled the prediction of ER, PR, and HER2 levels, where borderline values showed lower performance.
arXiv Detail & Related papers (2023-10-23T17:05:53Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - AI-based Carcinoma Detection and Classification Using Histopathological
Images: A Systematic Review [8.355946670746413]
Carcinoma is a subtype of cancer that constitutes more than 80% of all cancer cases.
Many researchers have reported methods to automate carcinoma detection and classification.
The increasing use of artificial intelligence in the automation of carcinoma diagnosis reveals a significant rise in the use of deep network models.
arXiv Detail & Related papers (2022-01-18T12:03:09Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z) - Deep Learning-based Computational Pathology Predicts Origins for Cancers
of Unknown Primary [2.645435564532842]
Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined.
Recent work has focused on using genomics and transcriptomics for identification of tumor origins.
We present a deep learning-based computational pathology algorithm that can provide a differential diagnosis for CUP.
arXiv Detail & Related papers (2020-06-24T17:59:36Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.