論文の概要: NuTrea: Neural Tree Search for Context-guided Multi-hop KGQA
- arxiv url: http://arxiv.org/abs/2310.15484v1
- Date: Tue, 24 Oct 2023 03:24:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 20:42:37.196844
- Title: NuTrea: Neural Tree Search for Context-guided Multi-hop KGQA
- Title(参考訳): NuTrea: コンテキスト誘導型マルチホップKGQAのためのニューラルツリー検索
- Authors: Hyeong Kyu Choi and Seunghun Lee and Jaewon Chu and Hyunwoo J. Kim
- Abstract要約: より広義の知識グラフを組み込んだ木探索型GNNモデルを提案する。
NuTreaは、複雑な自然言語の質問でKGに問い合わせる強力な手段を提供する。
- 参考スコア(独自算出の注目度): 17.88589801616262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-hop Knowledge Graph Question Answering (KGQA) is a task that involves
retrieving nodes from a knowledge graph (KG) to answer natural language
questions. Recent GNN-based approaches formulate this task as a KG path
searching problem, where messages are sequentially propagated from the seed
node towards the answer nodes. However, these messages are past-oriented, and
they do not consider the full KG context. To make matters worse, KG nodes often
represent proper noun entities and are sometimes encrypted, being uninformative
in selecting between paths. To address these problems, we propose Neural Tree
Search (NuTrea), a tree search-based GNN model that incorporates the broader KG
context. Our model adopts a message-passing scheme that probes the unreached
subtree regions to boost the past-oriented embeddings. In addition, we
introduce the Relation Frequency-Inverse Entity Frequency (RF-IEF) node
embedding that considers the global KG context to better characterize ambiguous
KG nodes. The general effectiveness of our approach is demonstrated through
experiments on three major multi-hop KGQA benchmark datasets, and our extensive
analyses further validate its expressiveness and robustness. Overall, NuTrea
provides a powerful means to query the KG with complex natural language
questions. Code is available at https://github.com/mlvlab/NuTrea.
- Abstract(参考訳): マルチホップ知識グラフ質問回答(Multi-hop Knowledge Graph Question Answering, KGQA)は、知識グラフ(KG)からノードを取得して自然言語の質問に答えるタスクである。
最近のGNNベースのアプローチでは、メッセージをシードノードから応答ノードへ順次伝播するKGパス探索問題としてこのタスクを定式化している。
しかし、これらのメッセージは過去指向であり、全kgコンテキストを考慮しない。
さらに悪いことに、kgノードは適切な名詞エンティティを表すことが多く、時には暗号化され、経路間の選択に役立たない。
これらの問題に対処するために,木探索に基づくGNNモデルであるNeural Tree Search (NuTrea)を提案する。
私たちのモデルは、未到達のサブツリー領域を調査し、過去指向の埋め込みを促進するメッセージパッシングスキームを採用しています。
さらに,グローバルなKGコンテキストを考慮したRF-IEF(Relation Frequency-Inverse Entity Frequency)ノードの埋め込みを導入し,不明瞭なKGノードを特徴付ける。
提案手法の汎用性は,3つの主要なマルチホップKGQAベンチマークデータセットの実験により実証され,その表現性と頑健性をさらに検証した。
全体として、NuTreaは複雑な自然言語の質問でKGに問い合わせる強力な手段を提供する。
コードはhttps://github.com/mlvlab/nutreaで入手できる。
関連論文リスト
- A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
そこで本研究では,テキスト内学習,すなわちKG-ICLを介し,プロンプトに基づくKGファウンデーションモデルを提案する。
クエリにおけるエンティティや関係を発見できないような一般化機能を備えたプロンプトグラフを符号化するために,まず統一トークン化器を提案する。
そこで我々は,プロンプトエンコーディングとKG推論を行う2つのメッセージパッシングニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T06:47:18Z) - Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting Black-box Language Models with Knowledge Graphs [72.89652710634051]
知識グラフ(KG)は、信頼性があり、構造化され、ドメイン固有であり、最新の外部知識を提供することで、Large Language Models(LLM)を補完する。
そこで本研究では,ゼロショット推論アルゴリズムであるTree-of-Traversalsを導入する。
論文 参考訳(メタデータ) (2024-07-31T06:01:24Z) - GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning [21.057810495833063]
本稿では,LLMの言語理解能力とGNNの推論能力を組み合わせた検索強化世代(RAG)形式の新しい手法であるGNN-RAGを紹介する。
我々のGNN-RAGフレームワークでは、GNNはグラフ情報を抽出するために高密度なサブグラフ推論器として機能する。
実験により、GNN-RAGは2つの広く使用されているKGQAベンチマークで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-05-30T15:14:24Z) - Multi-hop Question Answering over Knowledge Graphs using Large Language Models [1.8130068086063336]
複数のホップを含む知識グラフに答える能力(LLM)を評価する。
我々は、KGのサイズや性質によって、関連する情報をLLMに抽出し、供給するために異なるアプローチが必要であることを示す。
論文 参考訳(メタデータ) (2024-04-30T03:31:03Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - EntailE: Introducing Textual Entailment in Commonsense Knowledge Graph
Completion [54.12709176438264]
Commonsense knowledge graph(CSKG)は、名前付きエンティティ、短いフレーズ、イベントをノードとして表現するために自由形式のテキストを使用する。
現在の手法では意味的類似性を利用してグラフ密度を増大させるが、ノードとその関係のセマンティックな妥当性は未探索である。
そこで本研究では,CSKGノード間の暗黙的な包絡関係を見つけるために,テキストエンテーメントを導入し,同じ概念クラス内のサブグラフ接続ノードを効果的に密度化することを提案する。
論文 参考訳(メタデータ) (2024-02-15T02:27:23Z) - Knowledge Graphs Querying [4.548471481431569]
我々は、KGクエリのために開発された様々な学際的なトピックと概念を統一することを目的としている。
KGとクエリ埋め込み、マルチモーダルKG、KG-QAの最近の進歩は、ディープラーニング、IR、NLP、コンピュータビジョンドメインから来ている。
論文 参考訳(メタデータ) (2023-05-23T19:32:42Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
本稿では,ニューラルネットワーク演算子から知識グラフの埋め込みを分解する,複雑な問合せ応答のためのフレームワークを提案する。
クエリグラフの上に、局所的な原子式上のワンホップ推論とグローバル論理的推論を結びつける論理メッセージパッシングニューラルネットワーク(LMPNN)を提案する。
我々のアプローチは、最先端のニューラルCQAモデルをもたらす。
論文 参考訳(メタデータ) (2023-01-21T02:34:06Z) - Connecting the Dots: A Knowledgeable Path Generator for Commonsense
Question Answering [50.72473345911147]
本稿では、一般的な共通センスQAフレームワークを、知識のあるパスジェネレータで拡張する。
KGの既存のパスを最先端の言語モデルで外挿することで、ジェネレータはテキスト内のエンティティのペアを動的で、潜在的に新しいマルチホップリレーショナルパスに接続することを学びます。
論文 参考訳(メタデータ) (2020-05-02T03:53:21Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
知識グラフ(KG)質問生成(QG)は,KGから自然言語質問を生成することを目的とする。
本研究は,KGサブグラフから質問を生成し,回答をターゲットとする,より現実的な環境に焦点を当てる。
論文 参考訳(メタデータ) (2020-04-13T15:43:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。