論文の概要: Multi-hop Question Answering over Knowledge Graphs using Large Language Models
- arxiv url: http://arxiv.org/abs/2404.19234v1
- Date: Tue, 30 Apr 2024 03:31:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:33:46.285944
- Title: Multi-hop Question Answering over Knowledge Graphs using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた知識グラフに対するマルチホップ質問応答
- Authors: Abir Chakraborty,
- Abstract要約: 複数のホップを含む知識グラフに答える能力(LLM)を評価する。
我々は、KGのサイズや性質によって、関連する情報をLLMに抽出し、供給するために異なるアプローチが必要であることを示す。
- 参考スコア(独自算出の注目度): 1.8130068086063336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graphs (KGs) are large datasets with specific structures representing large knowledge bases (KB) where each node represents a key entity and relations amongst them are typed edges. Natural language queries formed to extract information from a KB entail starting from specific nodes and reasoning over multiple edges of the corresponding KG to arrive at the correct set of answer nodes. Traditional approaches of question answering on KG are based on (a) semantic parsing (SP), where a logical form (e.g., S-expression, SPARQL query, etc.) is generated using node and edge embeddings and then reasoning over these representations or tuning language models to generate the final answer directly, or (b) information-retrieval based that works by extracting entities and relations sequentially. In this work, we evaluate the capability of (LLMs) to answer questions over KG that involve multiple hops. We show that depending upon the size and nature of the KG we need different approaches to extract and feed the relevant information to an LLM since every LLM comes with a fixed context window. We evaluate our approach on six KGs with and without the availability of example-specific sub-graphs and show that both the IR and SP-based methods can be adopted by LLMs resulting in an extremely competitive performance.
- Abstract(参考訳): 知識グラフ(KG)は、大きな知識ベース(KB)を表す特定の構造を持つ大きなデータセットである。
自然言語クエリは、特定のノードから始まるKBエンターテイメントから情報を抽出し、対応するKGの複数のエッジを推論して、正しい応答ノードのセットに到達する。
KGにおける従来の質問応答のアプローチは、ベースとなっている。
(a)意味解析(SP) 論理形式(例えば、S-expression、SPARQLクエリなど)をノードとエッジの埋め込みを使って生成し、これらの表現を推論したり、言語モデルをチューニングして最終回答を直接生成したり、あるいは
(b)エンティティと関係を逐次抽出する情報検索方式
本研究では,複数のホップを含むKG上の疑問に答える(LLM)能力を評価する。
我々は、KGのサイズや性質によって、各LLMが固定されたコンテキストウィンドウを持つため、関連する情報をLLMに抽出し、供給するために異なるアプローチが必要であることを示す。
提案手法は6つのKGに対して,実例固有のサブグラフを使用・使用せずに評価し,IR法とSP法の両方がLLMで適用可能であることを示し,非常に競争力のある性能を示す。
関連論文リスト
- A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
そこで本研究では,テキスト内学習,すなわちKG-ICLを介し,プロンプトに基づくKGファウンデーションモデルを提案する。
クエリにおけるエンティティや関係を発見できないような一般化機能を備えたプロンプトグラフを符号化するために,まず統一トークン化器を提案する。
そこで我々は,プロンプトエンコーディングとKG推論を行う2つのメッセージパッシングニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T06:47:18Z) - Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting Black-box Language Models with Knowledge Graphs [72.89652710634051]
知識グラフ(KG)は、信頼性があり、構造化され、ドメイン固有であり、最新の外部知識を提供することで、Large Language Models(LLM)を補完する。
そこで本研究では,ゼロショット推論アルゴリズムであるTree-of-Traversalsを導入する。
論文 参考訳(メタデータ) (2024-07-31T06:01:24Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning
over Knowledge Graph [134.8631016845467]
我々は、KG-Agentと呼ばれる自律LLMベースのエージェントフレームワークを提案する。
KG-Agentでは、LLM、多機能ツールボックス、KGベースのエグゼキュータ、知識メモリを統合する。
有効性を保証するため、プログラム言語を利用してKG上のマルチホップ推論プロセスを定式化する。
論文 参考訳(メタデータ) (2024-02-17T02:07:49Z) - NuTrea: Neural Tree Search for Context-guided Multi-hop KGQA [17.88589801616262]
より広義の知識グラフを組み込んだ木探索型GNNモデルを提案する。
NuTreaは、複雑な自然言語の質問でKGに問い合わせる強力な手段を提供する。
論文 参考訳(メタデータ) (2023-10-24T03:24:15Z) - Graph Reasoning for Question Answering with Triplet Retrieval [33.454090126152714]
知識グラフ(KGs)から最も関連性の高い三つ子を抽出する簡便で効果的な方法を提案する。
我々の手法は最先端の精度を4.6%まで上回ることができる。
論文 参考訳(メタデータ) (2023-05-30T04:46:28Z) - Knowledge Graphs Querying [4.548471481431569]
我々は、KGクエリのために開発された様々な学際的なトピックと概念を統一することを目的としている。
KGとクエリ埋め込み、マルチモーダルKG、KG-QAの最近の進歩は、ディープラーニング、IR、NLP、コンピュータビジョンドメインから来ている。
論文 参考訳(メタデータ) (2023-05-23T19:32:42Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
本稿では,ニューラルネットワーク演算子から知識グラフの埋め込みを分解する,複雑な問合せ応答のためのフレームワークを提案する。
クエリグラフの上に、局所的な原子式上のワンホップ推論とグローバル論理的推論を結びつける論理メッセージパッシングニューラルネットワーク(LMPNN)を提案する。
我々のアプローチは、最先端のニューラルCQAモデルをもたらす。
論文 参考訳(メタデータ) (2023-01-21T02:34:06Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
本モデルでは,既存のKG補完アルゴリズムよりも複雑な推論パターンを必要とする問合せに対して,より効果的に答えることを示す。
提案モデルは、KBQAベンチマークの最先端モデルよりも優れているか、競合的に動作する。
論文 参考訳(メタデータ) (2022-02-22T01:34:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。