論文の概要: Improving Event Time Prediction by Learning to Partition the Event Time
Space
- arxiv url: http://arxiv.org/abs/2310.15853v1
- Date: Tue, 24 Oct 2023 14:11:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 18:30:14.337492
- Title: Improving Event Time Prediction by Learning to Partition the Event Time
Space
- Title(参考訳): イベント時間空間分割学習によるイベント時間予測の改善
- Authors: Jimmy Hickey, Ricardo Henao, Daniel Wojdyla, Michael Pencina, Matthew
M. Engelhard
- Abstract要約: 最近開発された生存分析法は, 未特定時間間隔のそれぞれの事象発生確率を予測し, 既存手法を改良した。
限られた利用可能なデータを持つ臨床環境では、手前の予測タスクに適した限られた間隔にイベント時間空間を散発的に分割することが好ましい。
2つのシミュレーションデータセットにおいて、基礎となる生成モデルと一致する間隔を復元できることが示される。
次に,新たに調和した脳卒中リスク予測データセットを含む実世界の3つの観測データに対して,予測性能の向上を示す。
- 参考スコア(独自算出の注目度): 13.5391816206237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently developed survival analysis methods improve upon existing approaches
by predicting the probability of event occurrence in each of a number
pre-specified (discrete) time intervals. By avoiding placing strong parametric
assumptions on the event density, this approach tends to improve prediction
performance, particularly when data are plentiful. However, in clinical
settings with limited available data, it is often preferable to judiciously
partition the event time space into a limited number of intervals well suited
to the prediction task at hand. In this work, we develop a method to learn from
data a set of cut points defining such a partition. We show that in two
simulated datasets, we are able to recover intervals that match the underlying
generative model. We then demonstrate improved prediction performance on three
real-world observational datasets, including a large, newly harmonized stroke
risk prediction dataset. Finally, we argue that our approach facilitates
clinical decision-making by suggesting time intervals that are most appropriate
for each task, in the sense that they facilitate more accurate risk prediction.
- Abstract(参考訳): 近年の生存率解析手法は, 既定(離散)時間間隔ごとに事象発生確率を予測することにより, 既存の手法を改良した。
イベント密度に強いパラメトリック仮定を置くことを避けることで、特にデータが豊富である場合、この手法は予測性能を改善する傾向にある。
しかし、利用可能なデータが少ない臨床環境では、目の前の予測タスクに適した限られた間隔に、イベント時間空間を適切に分割することが望ましいことが多い。
本研究では,そのような分割を定義する切断点の集合をデータから学習する手法を開発する。
2つのシミュレーションデータセットにおいて、基礎となる生成モデルにマッチする間隔を回復できることを示す。
次に,新たに調和した脳卒中リスク予測データセットを含む実世界の3つの観測データに対して,予測性能の向上を示す。
最後に,本手法は,より正確なリスク予測を促進するという意味で,各タスクに最も適した時間間隔を提案することにより,臨床意思決定を促進する。
関連論文リスト
- STEMO: Early Spatio-temporal Forecasting with Multi-Objective Reinforcement Learning [11.324029387605888]
本稿では,多目的強化学習に基づく早期時相予測モデルを提案する。
提案手法は,3つの大規模実世界のデータセットに対して優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-06T13:03:51Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
本稿では,長期時系列予測のための制約付き学習手法を提案する。
提案手法は, 予測ウィンドウ上でエラーを発生させながら, 時系列ベンチマークにおける競合平均性能を示すことを示すための, 実用的なプリマル・デュアルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-14T18:20:44Z) - Distribution-Free Conformal Joint Prediction Regions for Neural Marked Temporal Point Processes [4.324839843326325]
我々は、共形予測の枠組みを用いて、ニューラルTPPモデルにおける不確実性に対するより信頼性の高い手法を開発した。
主な目的は、イベントの到着時刻とマークに対する分布自由な共同予測領域を生成し、有限サンプルの限界カバレッジを保証することである。
論文 参考訳(メタデータ) (2024-01-09T15:28:29Z) - ForecastPFN: Synthetically-Trained Zero-Shot Forecasting [16.12148632541671]
ForecastPFNは、新しい合成データ分布に基づいて純粋に訓練された最初のゼロショット予測モデルである。
ForecastPFNによるゼロショット予測は、最先端の予測手法よりも正確で高速であることを示す。
論文 参考訳(メタデータ) (2023-11-03T14:17:11Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
SMURF-THPは,変圧器ホークス過程を学習し,予測の不確かさを定量化するスコアベース手法である。
具体的には、SMURF-THPは、スコアマッチング目標に基づいて、イベントの到着時刻のスコア関数を学習する。
我々は,イベントタイプ予測と到着時刻の不確実性定量化の両方において,広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-25T03:33:45Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
我々は、不確実な定量化を伴うmarkPsを学習するためのスコアMAtching推定器であるSMASHを紹介する。
具体的には,スコアマッチングによるマークPsの擬似的類似度を推定することにより,正規化自由度を推定する。
提案手法の優れた性能は、事象予測と不確実性定量化の両方において広範な実験によって実証される。
論文 参考訳(メタデータ) (2023-10-25T02:37:51Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
シーケンシャルなイベント予測の目標は、一連の歴史的なイベントに基づいて次のイベントを見積もることである。
実際には、次のイベント予測モデルは、一度に収集されたシーケンシャルなデータで訓練される。
文脈固有の表現を学習するための階層的な分岐構造を持つフレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-24T07:54:13Z) - Optimal Latent Space Forecasting for Large Collections of Short Time
Series Using Temporal Matrix Factorization [0.0]
複数の手法を評価し、それらの方法の1つを選択することや、最良の予測を生成するためのアンサンブルを選択するのが一般的である。
本稿では,低ランク時間行列係数化と潜在時系列上での最適モデル選択を組み合わせることで,短時間の高次元時系列データを予測するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-15T11:39:21Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。