論文の概要: Learned, Uncertainty-driven Adaptive Acquisition for Photon-Efficient
Multiphoton Microscopy
- arxiv url: http://arxiv.org/abs/2310.16102v1
- Date: Tue, 24 Oct 2023 18:06:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 18:49:15.036823
- Title: Learned, Uncertainty-driven Adaptive Acquisition for Photon-Efficient
Multiphoton Microscopy
- Title(参考訳): 光子効率多光子顕微鏡のための学習・不確実性駆動型適応獲得
- Authors: Cassandra Tong Ye, Jiashu Han, Kunzan Liu, Anastasios Angelopoulos,
Linda Griffith, Kristina Monakhova, Sixian You
- Abstract要約: 多光子イメージング計測のための画素ワイド不確実性を同時に認識し,予測する手法を提案する。
本手法はヒト子宮内膜組織の実験的ノイズMPM測定に有用である。
実実験データを用いたデノナイジングタスクにおける分布自由不確実性定量化を初めて実証する。
- 参考スコア(独自算出の注目度): 12.888922568191422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiphoton microscopy (MPM) is a powerful imaging tool that has been a
critical enabler for live tissue imaging. However, since most multiphoton
microscopy platforms rely on point scanning, there is an inherent trade-off
between acquisition time, field of view (FOV), phototoxicity, and image
quality, often resulting in noisy measurements when fast, large FOV, and/or
gentle imaging is needed. Deep learning could be used to denoise multiphoton
microscopy measurements, but these algorithms can be prone to hallucination,
which can be disastrous for medical and scientific applications. We propose a
method to simultaneously denoise and predict pixel-wise uncertainty for
multiphoton imaging measurements, improving algorithm trustworthiness and
providing statistical guarantees for the deep learning predictions.
Furthermore, we propose to leverage this learned, pixel-wise uncertainty to
drive an adaptive acquisition technique that rescans only the most uncertain
regions of a sample. We demonstrate our method on experimental noisy MPM
measurements of human endometrium tissues, showing that we can maintain fine
features and outperform other denoising methods while predicting uncertainty at
each pixel. Finally, with our adaptive acquisition technique, we demonstrate a
120X reduction in acquisition time and total light dose while successfully
recovering fine features in the sample. We are the first to demonstrate
distribution-free uncertainty quantification for a denoising task with real
experimental data and the first to propose adaptive acquisition based on
reconstruction uncertainty
- Abstract(参考訳): 多光子顕微鏡(MPM)は強力なイメージングツールであり、生体組織イメージングにおいて重要な効果がある。
しかし、ほとんどの多光子顕微鏡プラットフォームは点走査に依存しているため、取得時間、視野(fov)、光毒性、および画質の間に固有のトレードオフがあり、高速で大きなfov、および/または穏やかな撮像が必要な場合、ノイズの測定結果が発生することが多い。
深層学習は多光子顕微鏡測定に応用できるが、これらのアルゴリズムは幻覚を引き起こす傾向があり、医学や科学の分野では破滅的なものである。
本稿では,多光子画像計測における画素方向の不確かさを同時に推定し,アルゴリズムの信頼性を改善し,深層学習予測のための統計的保証を提供する手法を提案する。
さらに,この学習された画素単位の不確実性を利用して,サンプルの最も不確実な領域のみをスキャンする適応的取得手法を提案する。
本研究では,ヒト子宮内膜組織のMPM測定実験において,微細な特徴を維持でき,各画素における不確かさを予測しながら,他の denoising 法より優れていることを示す。
最後に, 適応的獲得手法を用いて, 試料中の微細な特徴を回収しながら, 120倍の取得時間と全光量削減効果を示した。
実実験データを用いた復調作業における分布自由不確実性定量化と再構成不確実性に基づく適応的獲得の提案を最初に行った。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychographyは、ナノメートルスケールでサンプルの非侵襲的なイメージングを可能にする、よく確立されたコヒーレント回折イメージング技術である。
Ptychographyの最大の制限は、サンプルの機械的スキャンによる長いデータ取得時間である。
本稿では,深部画像先行と深部画像先行とを組み合わせた生成モデルを提案する。
論文 参考訳(メタデータ) (2022-05-05T02:18:26Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
真値を含むことが保証される各画素の周囲の不確実な間隔を導出する方法を示す。
画像から画像への回帰を3つのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-10T18:59:56Z) - De-Noising of Photoacoustic Microscopy Images by Deep Learning [0.9786690381850356]
光音響顕微鏡(PAM)画像は、レーザー強度の最大許容露光、組織内の超音波の減衰、トランスデューサ固有のノイズによってノイズに悩まされる。
そこで本研究では,PAM画像から複雑なノイズを取り除くための深層学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2022-01-12T05:13:57Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
自己監督型認知の質を向上させる新しい方法を提案する。
我々は、クリーンな画像がポイントスプレッド関数(PSF)との畳み込みの結果であり、ニューラルネットワークの最後にこの操作を明示的に含んでいると仮定する。
論文 参考訳(メタデータ) (2020-08-19T13:06:24Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Distributed optimization for nonrigid nano-tomography [0.40631409309544836]
本研究では,ナノスケールの試料の投影アライメント,アンワーピング,正規化を併用した共同解析器を提案する。
投影データの一貫性は、ファーンバックのアルゴリズムによって推定される密度の高い光流によって制御され、より少ないアーティファクトで鋭いサンプル再構成をもたらす。
論文 参考訳(メタデータ) (2020-07-11T19:22:43Z) - Photoacoustic Microscopy with Sparse Data Enabled by Convolutional
Neural Networks for Fast Imaging [0.9786690381850356]
光音響顕微鏡(PAM)は近年,バイオメディカルイメージング技術として期待されている。
サンプリング密度の低減は、画像品質の犠牲となる画像取得時間を自然に短縮することができる。
本稿では,畳み込みニューラルネットワーク(CNN)を用いたスパースPAM画像の品質向上手法を提案する。
論文 参考訳(メタデータ) (2020-06-08T05:49:32Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-03-15T23:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。